

PRESIDENTE **DEL CONGRESSO** Luciano Calderone

ESRA ITALIA

ESRA Italian Chapter XXVIII CONGRESSO NAZIONALE

Terapia mini invasiva: le radiofrequenze e la crioablazione

Felice Occhigrossi, SONOPAIN, CIPS

Pain Therapy Unit

San Giovanni- Addolorata Hospital, Rome, Italy

Purposes of Neuromodulation

- **Effect:** selective alteration of pain transmission properties within a region of the nervous tissue
- **Result:** \downarrow nociception
- Mechanism: related to nerve activity
- Objective: to maximize nociceptive block, minimize tissue destruction

NEUROMODULATION COMPREHENSIVE TEXTBOOK OF PRINCIPLES, TECHNOLOGIES, AND THERAPIES

SECOND EDITION

Terapia mini invasiva: le radiofrequenze e la <u>crioablazione</u>

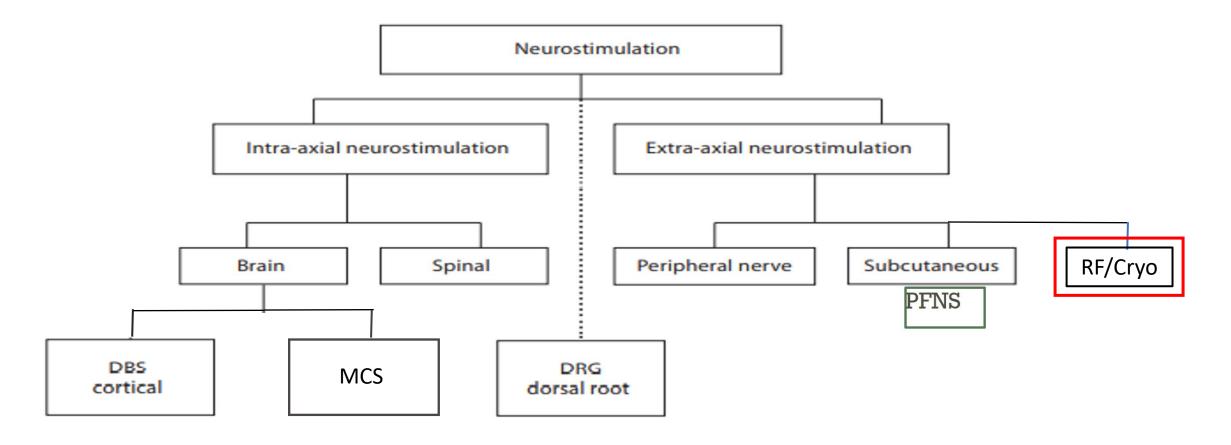
"The alteration of nerve activity through targeted delivery of a stimulus, such as electrical stimulation or chemical agents, to specific neurological sites in the body"

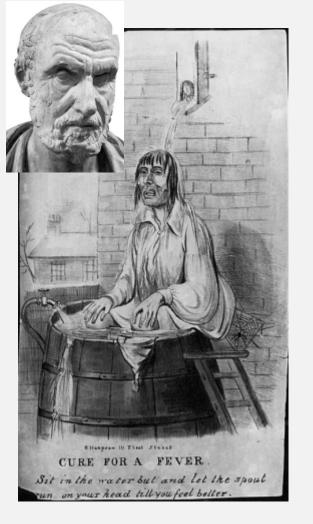
The International Neuromodulation Society

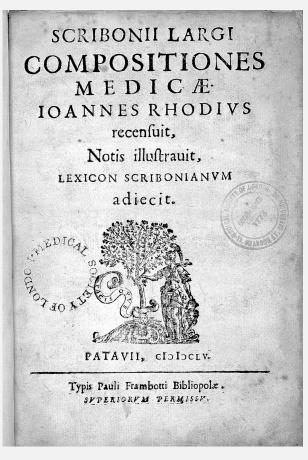
- inhibition
- stimulation
- modification
- regulation
- therapeutic alteration

electrically or chemically

activity in the central, peripheral, or autonomic nervous system


Neuromodulation techniques can be divided into electrical and chemical neuromodulations.


Electrical neuromodulation (Neurostimulation) includes:



The power of fire

RADIOFREQUENCY Variety of percutaneous procedures in medicine

- Aesthetic and restorative medicine
- Type of energy used to create heat and cause tissue changes
- An alternating electric current used to treat pain, at a high frequency (300-500 KHz)
 - 1. Heat formation
 - 2. Generation of high intensity alternate electric

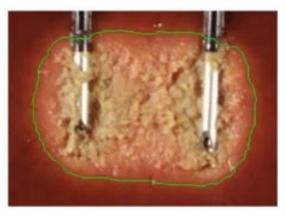
field

CONTINUOUS (1949)

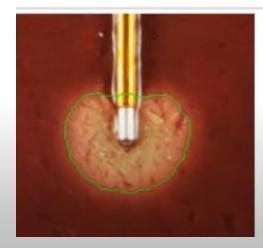
- 500 kHz with sine wave
- Temperatures between 50 and 90 °C
- Variable voltage \rightarrow fixed temperature
- Damage of nerve fibers

PULSED (1998)

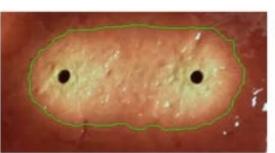
- 500 kHz with sine wave
- 2 pulses lasting 20 msec/second (2Hz)
- 480 msec pause
- Maximum 42 ° C
- $45V \rightarrow temperature < 42 ° C$
- Minimal neurolesion or neuromodulation (?)



DIFFERENT TYPES of CONTINUOUS RADIOFREQUENCY


Monopolar

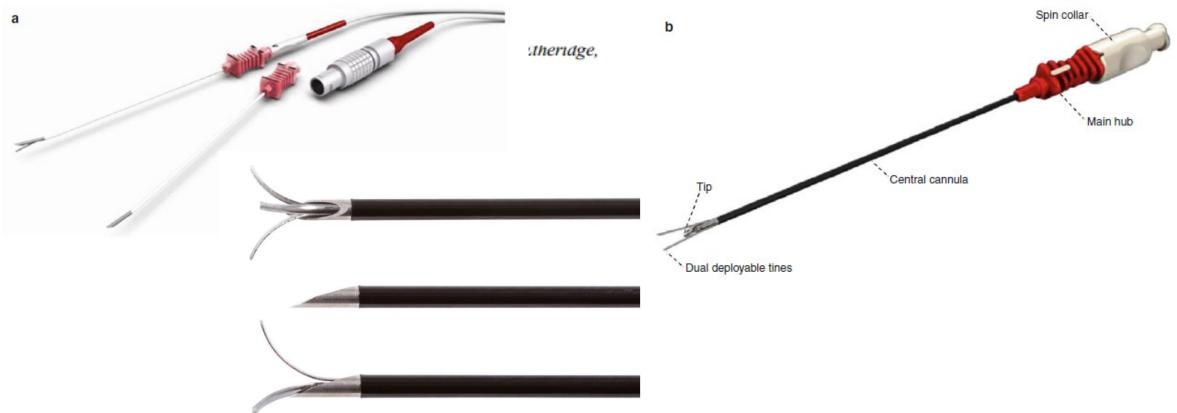
- Tissue heated
- Egg-shaped or spherical ablation
- Most procedures


Bipolar

- Tissue heated
- RF between electrodes
- No ground pad
 - Large brick-shaped ablation
- Eg SIJ Joint, Thoracic MB

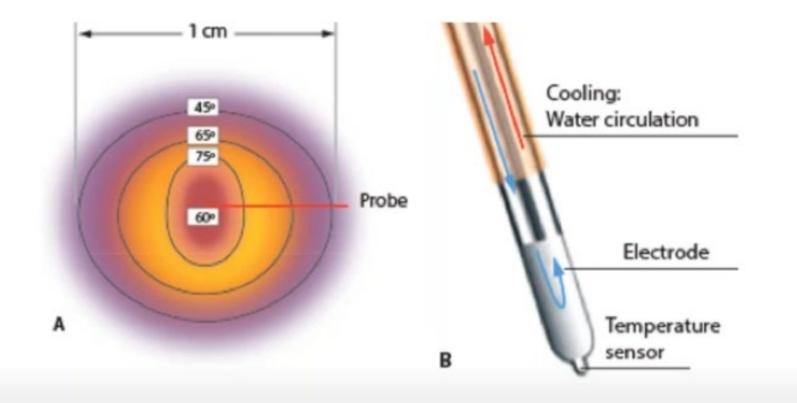
Cooled

- Tissue heated
- Spherical ablation Two cross sections of one ablation
- Electrode cooled

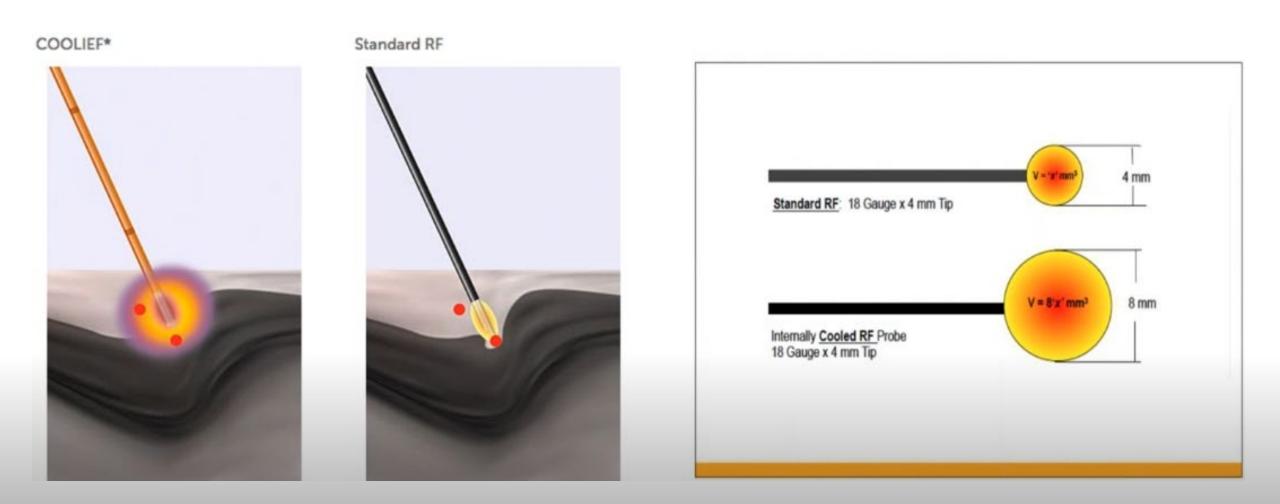


CHRONIC AND INTERVENTIONAL PAIN

ORIGINAL ARTICLE


Ultrasound-Guided Cervical Medial Branch Radiofrequency Neurotomy Can Multitined Deployment Cannulae Be the Solution?

COOLED RADIOFREQUENCY



COOLED RADIOFREQUENCY

open access to scientific and medical research

∂ Open Access Full Text Article

ORIGINAL RESEARCH

Radiofrequency Ablation for the Knee Joint: A Survey by the American Society of Pain and Neuroscience Journal of Pain Research 2022:15 1247–1255

VARIABLES

Use of diagnostic nerve block/s and image guidance

- 1 or 2
- Type, volume and location of LA

Image guidance used during needle placement:

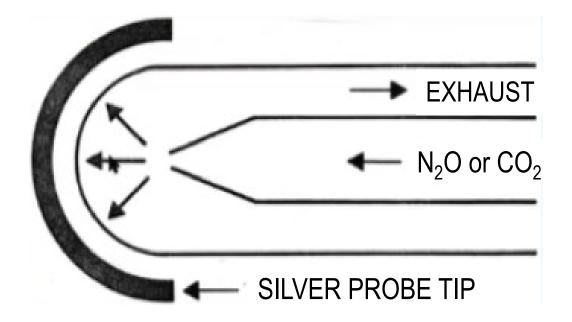
• Fluoroscopy vs Ultrasound

The type of modulation

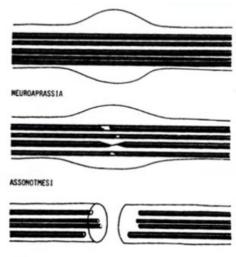
- pRF or cRF (Temperature, Pulse duration, Procedure duration)
- 1 or 2 lesions

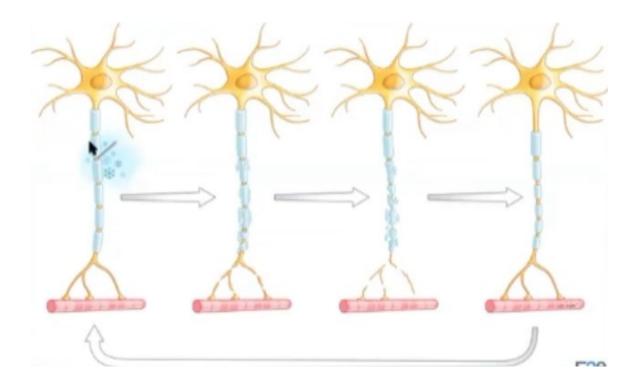
The type of cannula used in procedural approach

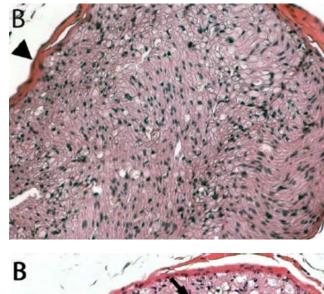
• Curved or Straight, Gauge, tip

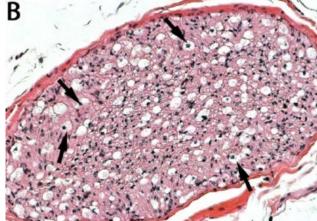

The power of ice

- A compressed gas (N₂O or CO₂) is released through a tiny opening and expands
- The tip goes to 70°C (Joules-Thompson effect)

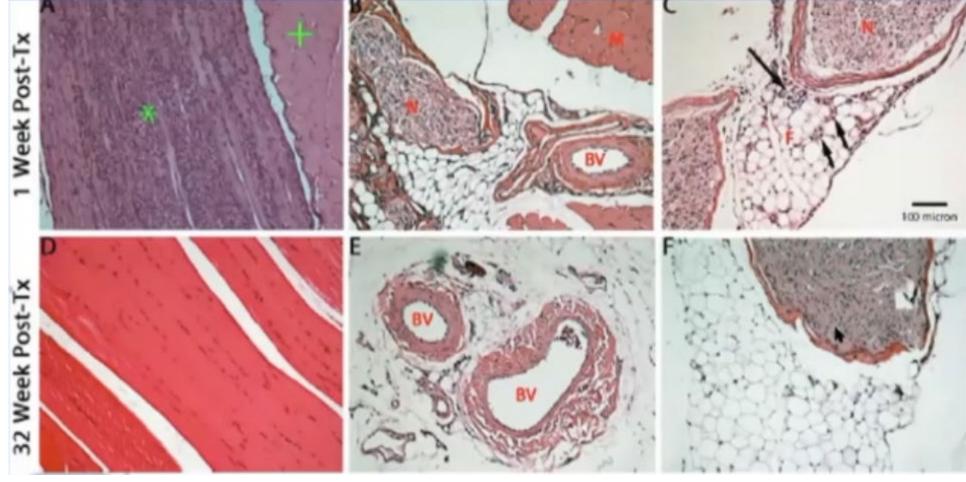







WALLERIAN DEGENERATION AND RECOVERY OF MOTOR NERVES AFTER MULTIPLE FOCUSED COLD THERAPIES MUSCLE & NERVE February 2015

NEUROTHESI



MUSCLE

BLOOD VESSELS

FAT

MUSCLE & NERVE February 2015

Successful lesion

- Function of the size of the ice ball
 - Size of probe
 - Freeze time (until the ice ball acts as insulate
 - Tissue permeability to water
 - Heat sink
- Function of proximity to nerve
 - Meticulous nerve stimulation
- Function of the correct diagnosis

Cryo advances

- Cryoneuroablation is resurging because of a combination of:
 - New recognition of peripheral nerve pathologies
 - New imaging techniques (Ultrasound)
 - New equipment
- Is the treatment of choice for entrapment of large, myelinated nerves

Cryo advantages

- Immediate pain reduction
- No neuroma formation, with no risk of secondary pain
- High efficiency: pain reduction from 6 months to 2 years
- Can be repeated (nerve grows back)
- Simple diagnostic (Ultrasound or Fluoroscopy)
- No scar tissue formation
- Suitable for patients with PM or stimulators
- No risk of vessel proliferation and obliteration

	RF	CRYO	PRF		
Myelinated nerves	Irreversible lesion	reversible	reversible		
Motor loss	Yes	yes	no		
Sensory loss	yes	yes	no		
Neuroma formation, potential for worse pain	yes	no	no		
Targets in non-cancer pain	Small, non-myelinated nerves only	All nerves	All nerves		
Cancer pain (end stage)	All nerves	All nerves	All nerves		
Placement	Easy	Harder	Easy		
Denervation certainty	1	11	×		
Pain relief	11	11	1		
How long it lasts?	6M+	6M*	?		

Indication	RF-Lesion	Pulsed -RF	Cryoanalgesia
Lumbar Facet Denervation	+++	-	+++
Cervical/thoracic Facet Denervation	+++	-	++
Sacroiliac Joint Denervation	bipolar, cooled	-	+++
DRG Denervation	- (C2 ??)	+++	-
Ganglion Gasseri	+++	+/-	-
Occipital nerve	++	-	+++
Infrapatellar nerve	+	+/-	+++
Postthoracotomy	-	+/-	+++
Postherniotomy	-	+/-	+++
Stump pain	++	+/-	+++
Coccygodynia	-	++	++

Tronnier V, University of Lübeck

Evidence and Reccomandations for RF TYPE of PAIN ASP ASIPP **NeuPSIG** Cervical root pain pRF not recommended pRF not recommended inconclusive pRF of C2 DRG Carvical axial pain Level IIB Lumbar root pain pRF not recommended pRF not recommended inconclusive pRF of lumbar DRG: good efficacy (+ TFESI), bipolar Lumbar axial pain Level IIA Postherpetic US-guided pRF on DRG more NRS reduction > 50% applied Neuralgia effective on DRG at 6 months **Trigeminal Neuralgia** Gasser: pRF + cRF US-guided pRF (high voltage and duration) **Occipital Neuralgia** pRF more effective and long-lasting than block with LA and CS More-definitive evidence is needed Morton Neuroma **Pudendal Neuralgia** US-guided pRF with similar results to CT-guided

- Diagnostic and therapeutic interventions for pain management are based on image-guided procedures.
- There are three types of imaging:
 - Fluoroscopy (F),
 - Ultrasonography (US),
 - Computed Tomography (CT).
- The gold standard today is Fluoroscopy.

MEDICINE

Terapia mini invasiva: le radiofrequenze e la <u>crioablazione</u>

Open Access Journal

ANNALS OF HEADACHE MEDICINE JOURNAL

Ultrasound-Guided Cervical Medial Branch Blocks: A Systematic Review and Meta-Analysis

Article Information

DOI: <u>10.30756/ahmj.2020.03.01</u>

Group by	Study name	Statistics for each study								Std diff in	n means an	nd 95% Cl	
Comparator		Std diff in means	Standard error	Variance	Lower limit			p-Value					
СТ	Obernauer 2013	2.43	0.42	0.17	1.61	3.25	5.83	<0.01				-	
ст		2.43	0.67	0.45	1.12	3.75	3.62	<0.01					
FL	Finlayson 2013	-2.26	0.40	0.16	-3.05	-1.47	-5.58	<0.01		L	-		
FL	Finlayson 2015	-1.36	0.31	0.10	-1.97	-0.74	-4.33	<0.01		_ _ _			
FL	-	-1.77	0.45	0.20	-2.65	-0.89	-3.94	<0.01			-		
Overall		0.30	2.10	4.42	-3.82	4.42	0.14	0.89					
									-5.00	-2.50	0.00	2.50	5.00

Incidence of Vascular Puncture

Group by Design	Study name	Statistics for each study						Odds	ratio and	95% C
		Odds ratio	Lower limit		Z-Value	p-Value				
र	Park 2017	0.05	0.00	0.90	-2.03	0.04				
R		0.05	0.00	0.90	-2.03	0.04				
RCT	Finlayson 2013	0.18	0.01	4.01	-1.08	0.28				
RCT		0.18	0.01	4.01	-1.08	0.28				-
Overall		0.09	0.01	0.75	-2.23	0.03				
							0.01	0.1		10

Ultrasound of the cervical spine

PAIN MEDICINE

Ultrasonography of the Cervical Spine

An In Vitro Anatomical Validation Model

Maarten van Eerd, M.D., F.I.P.P., Jacob Patijn, M.D., Ph.D., Judith M. Sieben, Ph.D., Mischa Sommer, M.D., Ph.D., Jan Van Zundert, M.D., Ph.D., F.I.P.P., Maarten van Kleef, M.D., Ph.D., F.I.P.P., Arno Lataster, M.Sc.

- There were no validated ultrasound approaches for the cervical spine
- Delicate and vital structures in a very small area

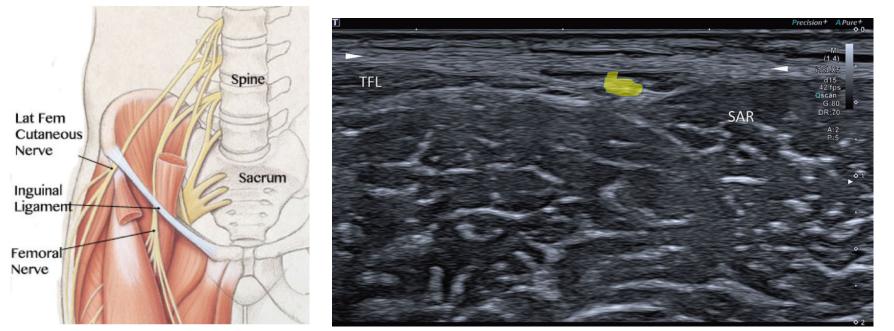
Anesthesiology, V 120 • No 1 January 2014

Why Ultrasound?

- Most typical imaging examinations and interventional procedures performed under fluoroscopy have also been reportedly performed under ultrasound guidance Hurdle MF. Phys Med Rehabil Clin N Am. 2016;27(3):673–86.
- 2. For certain types of cervical pain injection therapy, there is also evidence that ultrasound provides noninferior guiding effects when compared with computed tomography

Yue Ley et Al. ìi. Clin J Pain. 2023;39(2):68-75..

- 3. Many advantages:
 - no ionizing radiation,
 - real-time guidance,
 - high spatial resolution,
 - excellent soft tissue contrast,
 - ability to identify and avoid critical structures

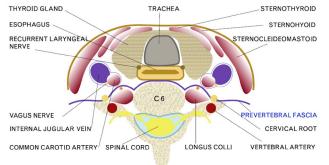


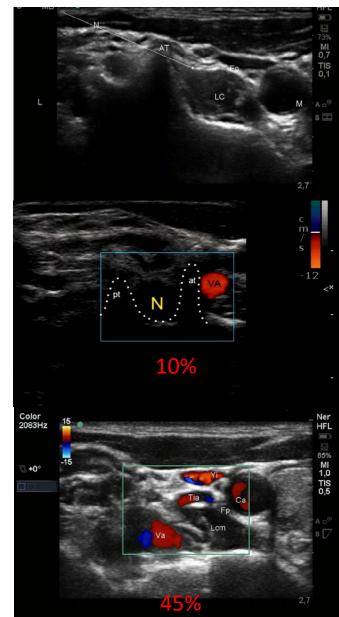
Pain Management

• Ensure accuracy of procedures

Landmark guide: 5-40%

US-guidance: 95-100%


Pain Management



Can J Anesth/J Can Anesth (2012) 59:1040–1047 DOI 10.1007/s12630-012-9779-4

REPORTS OF ORIGINAL INVESTIGATIONS

Evaluation of sonoanatomy relevant to performing stellate ganglion blocks using anterior and lateral simulated approaches: an observational study

Only positive properties?

