

ESRA ITALIAN CHAPTER

309 NATIONAL MEETING

Presidents:

Giuseppe Servillo, Fabrizio Fattorini

13-15 NOV 2025

NAPOLI HOTEL RAMADA

The ECHOTIP protocol: use of ultrasound for tip navigation and tip location during central venous access placement

Fabrizio Brescia
SOC Anestesia e Rianimazione
Vascular Access Team

Global Use of Ultrasound

Eur J Anaesthesiol 2020; 37:344-376

GUIDELINES

European Society of Anaesthesiology guidelines on perioperative use of ultrasound-guided for vascular access (PERSEUS vascular access)

Massimo Lamperti, Daniele Guerino Biasucci, Nicola Disma, Mauro Pittiruti, Christian Breschan, Davide Vailati, Matteo Subert, Vilma Traškaitė, Andrius Macas, Jean-Pierre Estebe, Regis Fuzier, Emmanuel Boselli and Philip Hopkins

Lina A. Gorald, J. R. J. H. HELDE C. C. DRF (AMI Igner Indicates, J. C. R. J. F. LOS C. C. DRF (AMI Mery Y. Hoge, Pro. DR, H. C., FAMI Chepher Bowshare, J. M. R. C., GAMC) Steme Claws, John, D. K. C. C. MAC Steme Claws, John, D. K. C. D. S. C. D. C. D.

REVISED 2021

INS

JAPAN SET DELETE

OTHER SET DESCRIPTION OF THE COURT

OTHER SET DESCRIPTION OF THE

Preprocedural US assessment

US Venipuncture

Immediate diagnosis of venipuncture complications

US Tip navigation - correct direction of the catheter

US Tip location - position of the catheter tip

Diagnosis and monitoring of late non-infectious complications

Global Use of Ultrasound

Eur J Anaesthesiol 2020; 37:344-376

GUIDELINES

European Society of Anaesthesiology guidelines on perioperative use of ultrasound-guided for vascular access (PERSEUS vascular access)

Massimo Lamperti, Daniele Guerino Biasucci, Nicola Disma, Mauro Pittiruti, Christian Breschan, Davide Vailati, Matteo Subert, Vilma Traškaitė, Andrius Macas, Jean-Pierre Estebe, Regis Fuzier, Emmanuel Boselli and Philip Hopkins

Lina A, Grossi, Jie, RJ, H, MCHO-SC, CRIP[®], FAMI Ipre History, RGC, RH, FERO AC, CRIP[®] Hary E, Hoge, Fe, Rh, HCC, GAM Deployer Toward, Fe, MC, GAMCO Shone Clare, Wille, SH, COMACO Shone Clare, Miller, SH, COMACO Shone No. HC, CRIP, CRIP, MC, EL SEC - Red Fileda, Nation, SH, CRIP, CRIP, SHO, SHOPPING, MILLER, SHO, SHO, SHO, SHO, SHOPPING, SHOPPING, SHOPPING, SHOPPING SHOPPING, SHOPPING, SHOPPING, SHOPPING SHOPPING, SHOPPING, SHOPPING, SHOPPING SHOPPING, SHOPPING, SHOPPING, SHOPPING SHOPPING, SHO

REVISED 2021

US Tip navigation - correct direction of the catheter US Tip location - position of the catheter tip

ESRA ITALIAN CHAPTER | 30° NATIONAL MEETING 13-15 NOV 2025, NAPOLI

Editorial

ECHOTIP: A structured protocol for ultrasound-based tip navigation and tip location during placement of central venous access devices in adult patients

Antonio La Greca¹, Emanuele Iacobone², Daniele Elisei², Daniele Guerino Biasucci³, Vito D'Andrea⁴, Giovanni Barone⁵, Geremia Zito Marinosci⁶ and Mauro Pittiruti¹

JVA The Journal of Vascular Access

The Journal of Vascular Access 2023, Vol. 24(4) 535-544
© The Author(s) 2021
Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/11297298211044325
journals.sagepub.com/home/jva

2021

Editorial

Ultrasound-based tip navigation and tip location during placement of central venous access devices in adult patients: The ECHOTIP protocol revisited

JVA The Journal of Vascular Access

The Journal of Vascular Access 1–7

© The Author(s) 2025
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/11297298251347084
journals.sagepub.com/home/jva

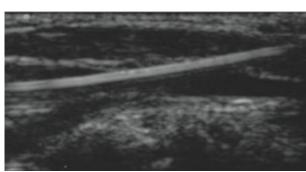
S Sage

Maria Giuseppina Annetta (), Stefano Elli (), Antonio Gidaro (), Davide Giustivi (), Emanuele Iacobone () and Mauro Pittiruti ()

2025

ECHOTIP: A structured protocol for ultrasound-based tip navigation and tip location during placement of central venous access devices in adult patients

Antonio La Greca¹, Emanuele Iacobone², Daniele Elisei², Daniele Guerino Biasucci³, Vito D'Andrea⁴, Giovanni Barone⁵, Geremia Zito Marinosci⁶ and Mauro Pittiruti¹


The Journal of Vascular Access 2023, Vol. 24(4) 535–544
© The Author(s) 2021
Article reuse guidelines: sagepub.com/journals-permissions
DOI: 10.1177/11297298211044325
journals-sagepub.com/home/jva

2021

US Tip navigation

 Tip navigation: ultrasound-based visualization of the guidewire and/or of the catheter to verify the correct direction into the superior vena cava (SVC) or inferior vena cava (IVC).

ESRA ITALIAN CHAPTER | 30° NATIONAL MEETING 13-15 NOV 2025, NAPOLI

Editorial

ECHOTIP: A structured protocol for ultrasound-based tip navigation and tip location during placement of central venous access devices in adult patients

Antonio La Greca¹, Emanuele Iacobone², Daniele Elisei², Daniele Guerino Biasucci³, Vito D'Andrea⁴, Giovanni Barone⁵, Geremia Zito Marinosci⁶ and Mauro Pittiruti¹

US Tip navigation

The Journal of Vascular Access

2023, Vol. 24(4) 535-544

sagepub.com/journals-permissions DOI: 10.1177/11297298211044325

journals.sagepub.com/home/jva

© The Author(s) 2021 Article reuse guidelines: Table I. (a) ECHOTIP protocol for CICCs.

	Probe	Technique
Tip navigation	7–12 MHz linear probe	Visualization of the cannulated vessel (wire/catheter inside the vein) Visualization of the deep vessels of neck and chest according to RaCeVA
Tip location	2–6 MHz sectorial probe As alternative option: 3–8 MHz convex probe	Immediate visualization (< I s) of bubbles in RA after flushing First option: subcostal views (four-chamber or bi-caval) Second option: four-chamber apical view

(b) ECHOTIP protocol for PICCs.

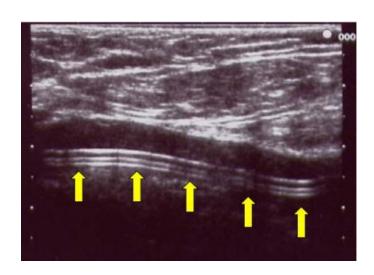
	Probe	Technique
Tip navigation	7–12 MHz linear probe	Visualization of the deep veins of the arm and of the infra/supraclavicular area according to RaPeVA and RaCeVA
Tip location	2–6 MHz sectorial probe As alternative option: 3–8 MHz convex probe	Immediate visualization (<2s) of bubbles in RA after flushing First option: subcostal views (four-chamber or bi-caval) Second option: four-chamber apical view

(c) ECHOTIP protocol for FICCs.

	Probe	Technique		
Tip navigation	7–12MHz linear probe (femoral vein and external iliac vein)	Visualization of the deep vessels of the lower limb according to RaFeVA		
_	3–8 MHz convex probe (common iliac vein and IVC)	Visualization of IVC in short and long axis views		
Tip location	2–6 MHz sectorial probe	Visualization of bubbles after flushing		
	As alternative option: 3-8 MHz convex probe	Tip in IVC: immediate visualization of bubbles in IVC Tip in RA or at the junction RA/IVC: immediate visualization of bubbles in RA		

ECHOTIP: A structured protocol for ultrasound-based tip navigation and tip location during placement of central venous access devices in adult patients

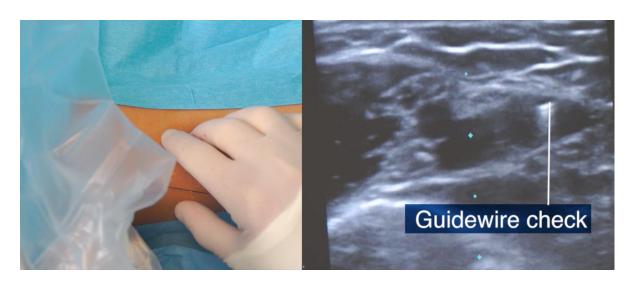
Antonio La Greca¹, Emanuele Iacobone², Daniele Elisei², Daniele Guerino Biasucci³, Vito D'Andrea⁴, Giovanni Barone⁵, Geremia Zito Marinosci⁶ and Mauro Pittiruti¹


The Journal of Vascular Access 2023, Vol. 24(4) 535–544
© The Author(s) 2021
Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/11297298211044325
journals.sagepub.com/home/jva
SSAGE

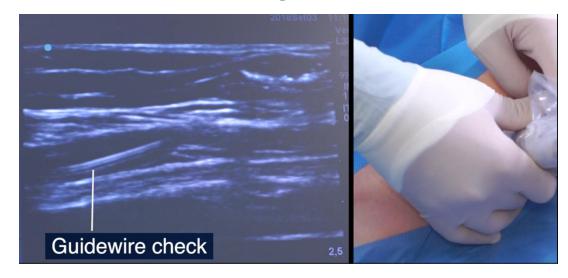
guidewire visualization

US Tip navigation

catheter visualization


(\$)SAGE

ECHOTIP: A structured protocol for ultrasound-based tip navigation and tip location during placement of central venous access devices in adult patients


Antonio La Greca¹, Emanuele lacobone² Daniele Elisei², Daniele Guerino Biasucci³ Dyito D'Andrea⁴ Dyito D'Andrea⁴ Dyito Diarone⁵, Geremia Zito Marinosci⁶ and Mauro Pittiruti Diarone⁵

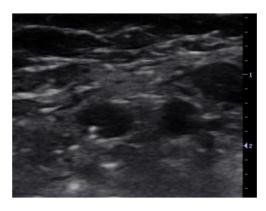
US Tip navigation guidewire visualization

Short axis

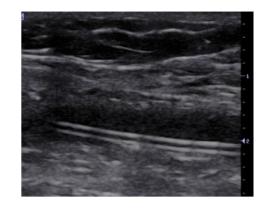
Long axis

ECHOTIP: A structured protocol for ultrasound-based tip navigation and tip location during placement of central venous access devices in adult patients

Antonio La Greca¹, Emanuele Iacobone², Daniele Elisei², Daniele Guerino Biasucci³, Vito D'Andrea⁴, Giovanni Barone⁵, Geremia Zito Marinosci⁶ and Mauro Pittiruti

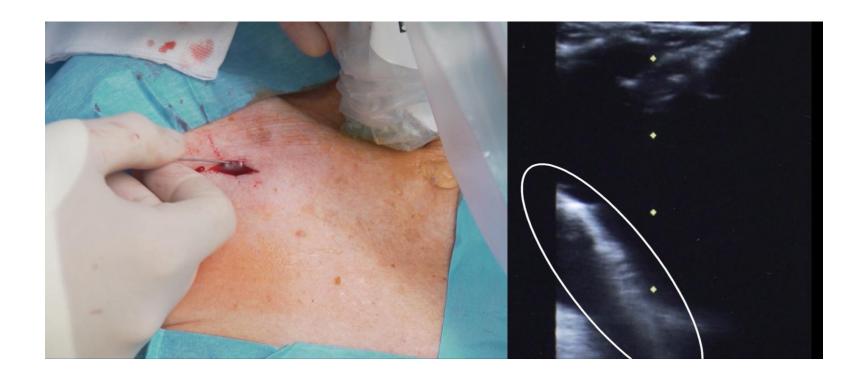

© The Author(s) 2021 sagepub.com/journals-permissions DOI: 10.1177/11297298211044325

\$SAGE


US Tip navigation Visualization of the catheter in the vein

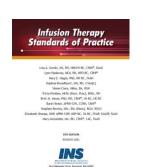
Long axis

Short axis



Visualization of the guidewire toward the brachio-cephalic vein and SVC

US Tip navigation


Overall feasibility 96% - Specificity 100% (no false positives)

LIMITS

- While the guidewire can be easily visualized in SVC, the catheter is not easily identified, unless it still has the guidewire inside
- Some case of false negative has been described

23.3 The CVAD tip location with the greatest safety profile in adults and children is the cavoatrial junction (CAJ).

Eur J Anaesthesiol 2020; 37:344-376

GUIDELINES

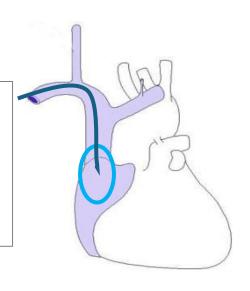
European Society of Anaesthesiology guidelines on perioperative use of ultrasound-guided for vascular access (PERSEUS vascular access)

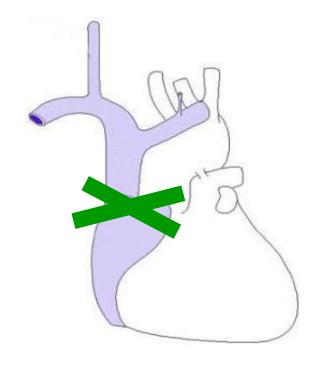
Massimo Lamperti, Daniele Guerino Biasucci, Nicola Disma, Mauro Pittiruti, Christian Breschan, Davide Vailati, Matteo Subert, Vilma Traškaitė, Andrius Macas, Jean-Pierre Estebe. Regis Fuzier. Emmanuel Boselli and Philip Hopkins

ntensive Care Med OI 10.1007/s00134-012-2597-

Giancarlo Scoppettuo David Feller-Kopman Wolfram Schummer Roberto Biffi Eric Desruennes

Massimo Lamperti
Andrew R. Bodenham
Mauro Pittriuti
Michael Blaivas
John G. Augoustides
Mahmoud Elbarbary
Thierry Pirotte
Dimitrios Karakitoso
Jack LeDonne


CONFERENCE REPORTS AND EXPERT PANEL


Tip location

Intraprocedural verification of the correct location of the tip of the catheter

1/3 distal of the SVCcavo-atrial junction1/3 prox right atriumIVC

TUTTI GLI ALTRI

Cateteri venosi PERIFERICI

Compresi cateteri negli intenti "centrali" ma con la punta posizionata non correttamente

Se usati come "centrali"

Rischio di trombosi

Rischio di malfunzionamento

COSA POSSIAMO INFONDERE **DOVE**

	Via PERIFERICA	Via CENTRALE
Nutrizione parenterale	Osmolarità < 850 mOsm/l (SINPE) Osmolarità < 800 mOsm/l (ASPEN)	Qualunque osmolarità
Chemioterapia infusionale	Evitare TASSATIVAMENTE i vescicanti Evitare PREFERIBILMENTE tutti i CHT	Qualunque farmaco
Terapie varie (farmaci in bolo o infusione rapida, soluzioni cristalloidi, etc.)	pH compreso tra 5 e 9 Osmolarità < 600 mOsm/l (INS) Osmolarità < 500 mOsm/l (AVA)	Qualunque pH

Flusso	\varnothing (mm)	Flow (ml/min)	
Digital / Metacarpal veins	2-5	10 – 30	
Cephalic or Basilic vein	6	40	
Basilic vein (upper arm)	8 -10	95	
Axillary vein	16	333	
Subclavian vein	19	800	
Innominate (or brachio- cephalic) vein	19	800	
Superior vena cava	30	2000	

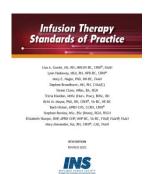
lt should be noted that for **optimum flow rates**, it may be necessary to position the tip of the catheter <u>at the</u>

<u>junction</u> of the right atrium and superior vena cava (SVC;

<u>Vesely, 2003</u>) to avoid irritation/thrombus formation

when the catheter tip abuts on to the vein wall (<u>Fletcher</u>

<u>& Bodenham, 2000</u>).

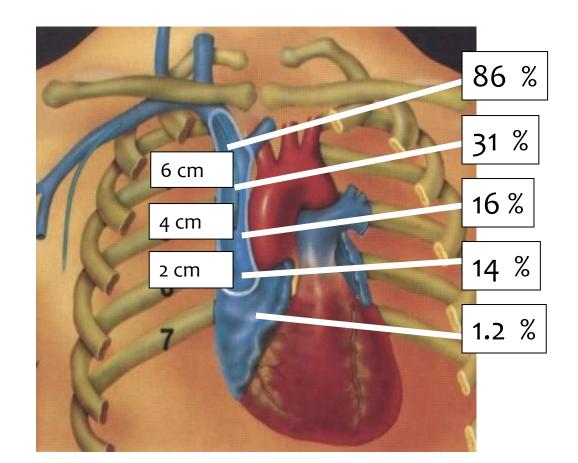

TECHNICAL REPORT INTERNATIONAL JOURNAL OF LABORATORY HEMATOLOGY

Int. Jnl. Lab. Hem. 2007, 29, 261–278

Guidelines on the insertion and management of central

venous access devices in adults

L. BISHOP*, L. DOUGHERTY[†], A. BODENHAM[‡], J. MANSI*, P. CROWE[§], C. KIBBLER[¶], M. SHANNON^{**},


Malfunzionamento

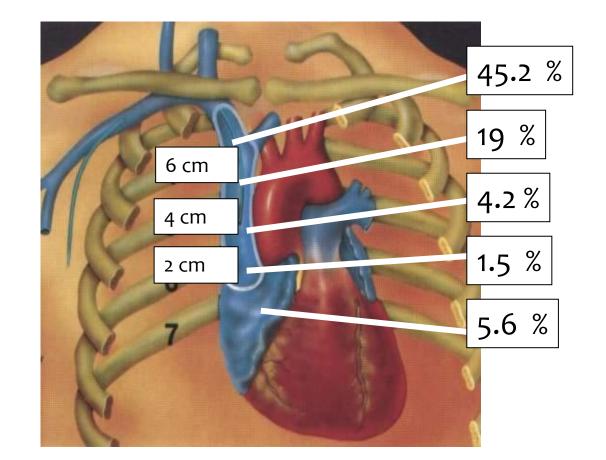
Am J Surg. 1999;178:38-41.

Silicone Venous Access Devices Positioned with Their Tips High in the Superior Vena Cava Are More Likely to Malfunction

Judy Petersen, RN, MN, AOCN, Joseph H. Delaney, MD, Mark T. Brakstad, MD, Ronald K. Rowbotham, MS, Charles M. Bagley, Jr., MD, Seattle, Washington

- C. Avoid placing tip of the CVAD outside the SVC or IVC (eg, innominate, brachiocephalic, subclavian, external, or common iliac veins), as this is associated with higher rates of complications. In rare circumstances including anatomical or pathophysiological changes, these less-than-ideal tip positions might be clinically indicated. 5,6,11,15-21 (III)
- D. Avoid intracardiac tip location in neonates and infants less than 1 year of age as this tip location has been associated with vessel erosion and cardiac tamponade. This complication has been described in the literature with particular reference to the use of small-gauge catheters typically less than 3 French (Fr).^{2,12,22-37} (II)

ESRA ITALIAN CHAPTER | 30° NATIONAL MEETING 13-15 NOV 2025, NAPOLI


Trombosi

Support Care Cancer (2005) 13:325–331 DOI 10.1007/s00520-004-0723-1

ORIGINAL ARTICLE

Jo Caers Christel Fontaine Vincent Vinh-Hung Johan De Mey Gerrit Ponnet Catheter tip position as a risk factor for thrombosis associated with the use of subcutaneous infusion ports

- C. Avoid placing tip of the CVAD outside the SVC or IVC (eg, innominate, brachiocephalic, subclavian, external, or common iliac veins), as this is associated with higher rates of complications. In rare circumstances including anatomical or pathophysiological changes, these less-than-ideal tip positions might be clinically indicated. 5,6,11,15-21 (III)
- D. Avoid intracardiac tip location in neonates and infants less than 1 year of age as this tip location has been associated with vessel erosion and cardiac tamponade. This complication has been described in the literature with particular reference to the use of small-gauge catheters typically less than 3 French (Fr).^{2,12,22-37} (II)

Rx torace post procedurale

Frequenza dei malposizionamenti primari (con verifica della posizione della punta postprocedurale): 2-30%

Verifica della posizione della punta postprocedurale = possibile necessità di riposizionamento

- Tempo
- Costi
- Danno per il paziente

JVA The Journal of Vascular Access

Editorial

An Italian expert consensus on the choice of the method of tip location for central venous access devices

The Journal of Vascular Access
1–14
® The Author(s) 2025
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/11297298251336809
journals.sagepub.com/nome/jva
S Sage

Vincenzo Faraone¹, Mauro Pittiruti², Maria Giuseppina Annetta³, Giovanni Barone⁴, Fabrizio Brescia⁵, Maria Calabrese⁶, Antonella Capasso⁷, Giuseppe Capozzoli⁸, Vito D'Andrea⁹, Sonia D'Arrigo³, Daniele Elisei¹⁰, Stefano Elli¹¹, Igor Giarretta¹², Antonio Gidaro¹³, Davide Giustivi¹⁴, Emanuele Iacobone¹⁰, Rossella Mastroianni¹⁵, Fulvio Pinelli¹⁶, Giancarlo Scoppettuolo¹⁷, Ferdinando Spagnuolo¹⁸, Geremia Zito Marinosci¹⁹, Gilda Pepe² and Daniele G Biasucci²⁰

With this purpose in mind, the Italian Group of Long-Term Venous Access Devices (GAVeCeLT) and the Italian Vascular Access Society (IVAS) have decided to develop a joint consensus document that may assist the clinicians in the choice of the safest, most accurate, and most costeffective method of tip location in different categories of patients requiring a CVAD.

Tip location

An Italian expert consensus on the choice of the method of tip location for central venous access devices

The Journal of Vascular Access
1–14
© The Author(s) 2025
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/11297298251336809
journals.agepub.com/home/jva

VA The Journal of Vascular Access

Vincenzo Faraone¹, Mauro Pittiruti², Maria Giuseppina Annetta³, Giovanni Barone⁴, Fabrizio Brescia⁵, Maria Calabrese⁶, Antonella Capasso⁷, Giuseppe Capozzoli⁸, Vito D'Andrea⁹, Sonia D'Arrigo³, Daniele Elisei¹⁰, Stefano Elli¹¹, Igor Giarretta¹², Antonio Gidaro¹³, Davide Giustivi¹⁴, Emanuele Iacobone¹⁰, Rossella Mastroianni¹⁵, Fulvio Pinelli¹⁶, Giancarlo Scoppettuolo¹⁷, Ferdinando Spagnuolo¹⁸, Geremia Zito Marinosci¹⁹, Gilda Pepe² and Daniele G Biasucci²⁰

Question #1: In which cases is intraprocedural tip location of CVADs indicated?

Background. According to the most recent guidelines, 1-3,16,20 assessment of tip location should be performed during any maneuver of central venous catheterization. The two most popular intra-procedural methods, IC-ECG and TTE, are simple and rapid enough

Tip location

to be performed in most cases—even when the central access is placed in emergency21—since they require just an ECG monitor with a sterile cable (IC-ECG) or a sectorial or convex ultrasound probe (TTE). Though, in conditions of extreme emergency (i.e. during resuscitation maneuvers) tip location may be impossible or difficult to perform. In such conditions, the assessment of the location of the tip of a centrally inserted central catheter (CICC) in adults or children or of an umbilical venous catheter (UVC) in neonates should be postponed. If the CVAD has been inserted in extreme urgency, without the proper strategies of infection prevention (hand hygiene, appropriate skin antisepsis, maximal barrier precautions), the postprocedural tip location may be even omitted, since the device must be removed within 24-48 h, as recommended by current guidelines.2,3

The Journal of VA Vascular Access

The Journal of Vascular Access

sagepub.com/journals-permissions

journals.sagepub.com/home/jva

DOI: 10.1177/11297298251336809

@ The Author(s) 2025 Article reuse guidelines:

S Sage

Editorial

An Italian expert consensus on the choice of the method of tip location for central venous access devices

Vincenzo Faraone¹, Mauro Pittiruti², Maria Giuseppina Annetta³, Giovanni Barone⁴, Fabrizio Brescia⁵, Maria Calabrese⁶, Antonella Capasso⁷, Giuseppe Capozzoli⁸, Vito D'Andrea⁹, Sonia D'Arrigo³, Daniele Elisei¹⁰, Stefano Elli¹¹, Igor Giarretta¹², Antonio Gidaro 13 (b), Davide Giustivi 14 (b), Emanuele Iacobone 10 (b), Rossella Mastroianni¹⁵, Fulvio Pinelli¹⁶, Giancarlo Scoppettuolo¹⁷ Ferdinando Spagnuolo 180, Geremia Zito Marinosci 19, Gilda Pepe² and Daniele G Biasucci20

Question #1: In which cases is intraprocedural tip location of CVADs indicated?

Tip location

Panel recommendation

Statement 1.1: Intraprocedural verification of tip position is always indicated: it should be performed during insertion/implantation of any CVAD, whether in neonate, child, or adult, whether in election or emergency, with the possible exception of CVADs inserted under conditions of extreme clinical emergency (e.g. UVC placement during neonatal resuscitation or CICC placement in children/adults in cardiorespiratory arrest).

(100% agreement: 95.5% strongly agree, 4.5% agree)

Special considerations

- If insertion has occurred under conditions of extreme clinical emergency, it is best to (a) perform a postprocedural tip location as soon as allowed by the patient's condition (see below) or (b) remove the device.
- Urgent placement of a 20- to 25-cm femoral catheter in an adult patient does not necessarily involve tip location, since such a device is unlikely to reach the inferior cava and it cannot be classified as "central."

An Italian expert consensus on the choice of the method of tip location for central venous access devices

JVA The Journal of Vascular Access

The Journal of Vascular Access I-14

© The Author(s) 2025

Article reuse guidelines: sagepub.com/journals-permissions

DOI: 10.1177/11297298251336809
journals.agepub.com/home/ya

Vincenzo Faraone¹, Mauro Pittiruti², Maria Giuseppina Annetta³, Giovanni Barone⁴, Fabrizio Brescia⁵, Maria Calabrese⁶, Antonella Capasso⁷, Giuseppe Capozzoli⁸, Vito D'Andrea⁹, Sonia D'Arrigo³, Daniele Elisei¹⁰, Stefano Elli¹¹, Igor Giarretta¹², Antonio Gidaro¹³, Davide Giustivi¹⁴, Emanuele Iacobone¹⁰, Rossella Mastroianni¹⁵, Fulvio Pinelli¹⁶, Giancarlo Scoppettuolo¹⁷, Ferdinando Spagnuolo¹⁸, Geremia Zito Marinosci¹⁹, Gilda Pepe² and Daniele G Biasucci²⁰

Clinical Nutrition 28 (2009) 365-377

Contents lists available at ScienceDirect

Clinical Nutrition

journal homepage: http://www.elsevier.com/locate/clnu

ESPEN Guidelines on Parenteral Nutrition: Central Venous Catheters (access, care, diagnosis and therapy of complications)

Mauro Pittiruti ^a, Helen Hamilton ^b, Roberto Biffi ^c, John MacFie ^d, Marek Pertkiewicz ^e

Tip location

Use methods for identifying CVAD tip location during the insertion procedure (ie, "real-time") due to greater accuracy, more rapid initiation of infusion therapy, and reduced costs.³⁸⁻⁴⁷ (III)

Lisa A. Gorski, MS, RII, HHCH-BC, CRIII[®], FAAII
Lynn Hadaway, MEd, RII, HIPD-BC, CRIII[®]
Mary E. Hagle, PhD, RI-BC, FAAII
Daphne Broadhurst, MII, RII, CWAC(C)
Simon Clare, MRes, BA, RGII
Tricia Kleidon, MISc (Nurs. Prac.), BISC, RII
Britt M. Mayer, FhD, RII, CRIII[®], VA-BC, HE-BC
Barb Hickel, APRI-CIS, CCRII, CRIII[®]
Stephen Rowley, MSC, BSC (Hons), RGII, RSCII
Elizabeth Sharpe, DIP, APRII-CIIP, HIP-BC, Wa-BC, FHAP, FAAIP, FAAII
Mary Alexander, MA, RII, CRIII[®], CR. FAAII

8TH EDITION

Safety

Effective

Cost-effective

JVA The Journal of Vascular Access

An Italian expert consensus on the choice of the method of tip location for central venous access devices

The Journal of Vascular Access I-14
0 The Author(s) 2025
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/11297298251336809
journals-sagepub.com/home/jva
Sage

Vincenzo Faraone¹, Mauro Pittiruti², Maria Giuseppina Annetta³, Giovanni Barone⁴, Fabrizio Brescia⁴, Maria Calabrese⁵, Antonella Capasso⁷, Giuseppe Capozzoli⁸, Vito D'Andrea⁹, Sonia D'Arrigo³, Daniele Elisei¹⁰, Stefano Elli¹¹, Igor Giarretta¹², Antonio Gidaro¹³, Davide Giustivi¹⁴, Emanuele Iacobone¹⁰, Rossella Mastroianni¹⁵, Fulvio Pinelli¹⁶, Giancarlo Scoppettuolo¹⁷, Ferdinando Spagnuolo¹⁸, Geremia Zito Marinosci¹⁹, Gilda Pepe² and Daniele G Biasucci²⁰

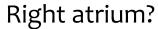
Infusion Therapy Standards of Practice

Lina A. Cordal, M.S. RJ, HelCifs PC, CRIP[®], FAMI Lynn Heldonoy, M.E., RJ, H.D. PG, C. Still[®] Mary E. Hagle, Ph.D., RH-BC, FAMI Dephre Broadburs, MR, RJ, CWALCI Simon Clare, MRS, B, B, CWALCI Tricia Relation, MRS (Bars. Frac), BRSC, RH Britt M. Moncy FAD, RH, CHEW[®], MSC, LE-BC Barb Hickel, APRI-CIS, CCRII, CRIP[®] Stephen Permoy, MSC, BSC (CRIP), RGII, RSCI Elizabeth Sharpo, DR, APRI-CIP, UR-D, WS-D, FAMIP, FAMI MAY Medicander, MA, SH, LORIF, CAE, FAMIP, FAMIP, FAMIP, FAMIP, FAMIP, FAMIP, FAMIP, FAMIP, CRIPP. CAE, FAMIP, CAE, FAMIP, CAE, CRIPP. CRIPP. CAE, FAMIP, CAE, FAMI

> 8TH EDITION REVISED 2021

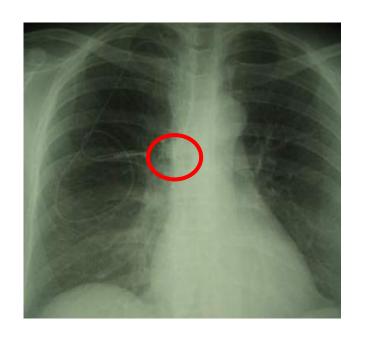
Tip location

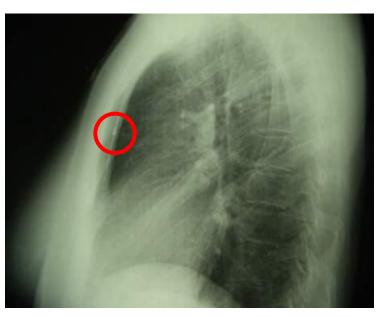
- Fluoroscopy
- Intracavitary electrocardiography
- Trans-thoracic echocardiography
- Trans-esophageal echocardiography



Tip locationFluoroscopy

fluoroscopy is a very old method of tip location with no clinical advantage and many disadvantages 1-4,14,15: it is inaccurate (since it is based on radiological landmarks), expensive (since it requires expensive equipment and dedicated environment), and unsafe (since it implies x-ray exposure of both the patient and the clinician); though, it is still adopted by some centers for insertion of CVADs such as chest-port and dialysis catheters.




Azygos vein

Tip locationFluoroscopy

Accuracy of radiological landmarks

Tip location
Fluoroscopy

Superior Vena cava?

Internal mammary vein

Accuracy of radiological landmarks

Tip location

Intracavitary ECG

- E. Use methods for identifying CVAD tip location during the insertion procedure (ie, "real-time") due to greater accuracy, more rapid initiation of infusion therapy, and reduced costs.³⁸⁻⁴⁷ (III)
 - 1. Use electrocardiogram (ECG) methods with either a metal guidewire or a column of normal saline inside the catheter lumen and observe the ECG tracing to place the CVAD tip at the CAJ. Follow manufacturers' directions for use with other ECG-based technology using a changing light pattern to detect tip location. 1,2,4,11,23,24,26,27,43,44,48-61 (II)

Lisa A. Gorski, MS, RII, HHCIS-EC, CRIII*, FAAN Lynn Hadaway, MEG, RII, IND-BC, CRIII* Mary E. Hagle, PhD, RH-BC, FAAN Daphne Broadhurst, MI, RII, CVAA(C) Simon Clare, MRes, BA, RGII Tricia Kleidon, MMSc (Hurs. Prac), BISc, RII Britt M. Mayer, PhD, RII, CRIII*, Na-BC, IIE-BC Barb Inicked, APRI-CLIC, CRIII, CRIII*, CRIII Stephen Rowley, MSc, BSc (Hons), RGII, RSCII Stephen Rowley, MSc, BSc (Hons), RGII, RSCII Stabeth Sharpe, DIP, APRI-CLIP, IIII* P. CV, M-BC, FIANP, FAANIP, FAANI Many Alexander, MA, RII, CRIII*, CAE, FAANI Many Alexander, MA, RIII. (RRIII*, CAE, FAANI)

8TH EDITION

JVA The Journal of Vascular Access

Review

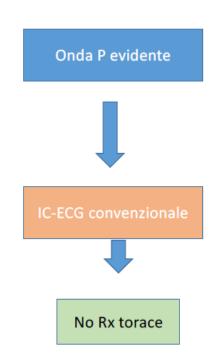
Intracavitary electrocardiography for tip location during central venous catheterization: A narrative review of 70 years of clinical studies

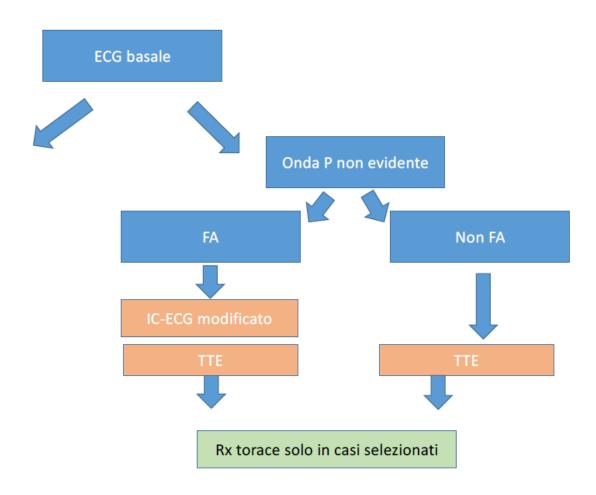
The Journal of Vascular Access 1–8
© The Author(s) 2020
Article reuse guidelines: sagepub.com/journals-permissions
DOI: 10.1177/1129729820929835
journals.sagepub.com/home/jva

Hellerstein HK, Pritchard WH and Lewis RL. Recording of intracavity potentials through a single lumen, saline filled cardiac catheter.

Proc Soc Exp Biol Med 1949; 71(1):58-60.

Original research article

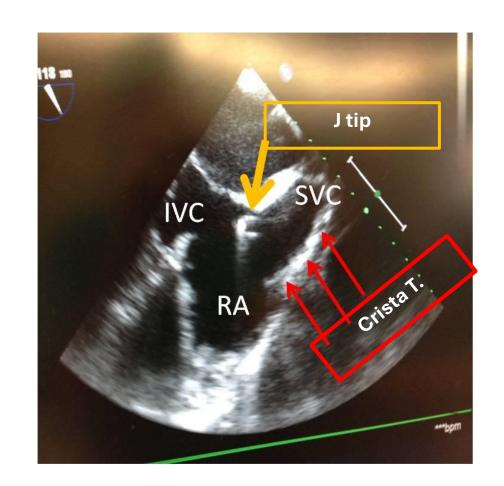

The Journal of Vascular Access

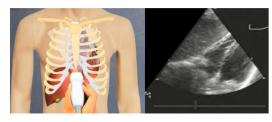

Transthoracic echocardiography as bedside technique to verify tip location of central venous catheters in patients with atrial arrhythmia

The Journal of Vascular Access 2020, Vol. 21(6) 861–867 © The Author(s) 2020 Article reuse guidelines: sagepub.com/journals-permission DOI: 10.1177/1129729820905200 journals.sagepub.com/home/jva (\$)SAGE

Emanuele Iacobone Daniele Elisei, Diego Gattari, Luigi Carbone¹ and Giuseppe Capozzoli²

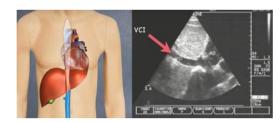
> Difficult identification of the P wave...




Trans-esophageal echocardiography

- The most accurate method for tip location
- Invasive
- Logistically impossible in the majority of patients
- Feasible for CICCs before/during cardiac surgery
- Not feasible for PICCs
- It requires a hard training for operators




- Direct visualization of the catheter tip is difficult in adult patients
- Direct visualization of the catheter tip is usually only possible if located in the right atrium
- "Bubble test"
- Better visualization in pediatric/neonatal settings

Subcostal 4-chamber view

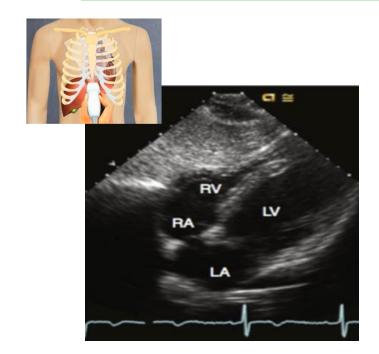
Apical 4-chamber view

Subcostal bicaval view

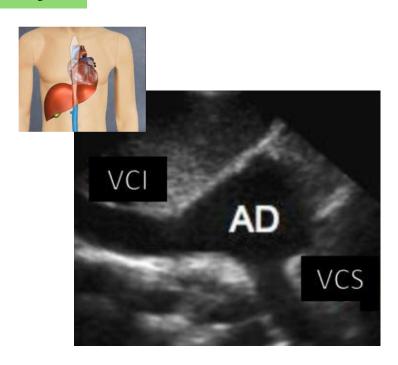
- Feasible in any clinical setting
- Non-invasive
- Difficult in some patients
- Safe for both operator and patient
- Less easy to learn than the IC-ECG: training required
- Less accurate in adults than the IC-ECG: need to standardize the technique and define the method

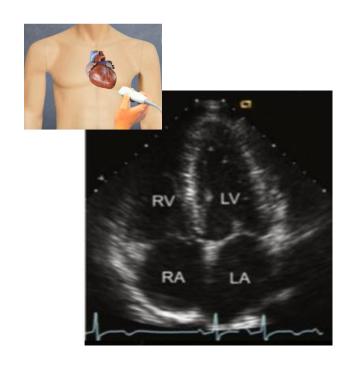
Ultrasound-based tip navigation and tip location during placement of central venous access devices in adult patients: The ECHOTIP protocol revisited

Editorial


The Journal of Vascular Access 1–7

© The Author(s) 2025
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/11297298251347084
journals.sagepub.com/home/jva


Maria Giuseppina Annetta¹, Stefano Elli², Antonio Gidaro³, Davide Giustivi⁴, Emanuele Iacobone⁵ and Mauro Pittiruti⁶


Direct visualization of the catheter tip is usually possible only if located in the right atrium

I scelta Subcostal 4-chamber view

Subcostal bicaval view

II scelta Apical 4-chamber view

Table 4 Recommendations on ultrasound vascular access in adults and cost-effectiveness

Ultrasound vascular access in adults				
Domain code	Suggested definition	Level of evidence	Degree of consensus	Strength of recommendation
D4.SD2.S1	Ultrasound guidance should be routinely used for short-term central venous access in adults	A	Very good	Strong
D4.SD2.S2	Ultrasound guidance should be routinely used for long-term central venous access in adults	A	Very good	Strong
D4.SD2.S3	PICCs should be routinely inserted at mid arm level by ultrasound guidance using micro introducer technique	A	Very good	Strong
D4.SD2.S4	Use of ultrasound guidance should be taken into consideration for any kind of peripheral intravenous line when difficult access is anticipated	В	Very good	Strong
D4.SD2.S5	Ultrasound-guided arterial catheterization improves first-pass success and should be used routinely in adults	Α	Very good	Strong
D4.SD2.S6	Ultrasound can accurately detect pneumothorax and should be routinely performed after central venous catheter cannulation when the pleura could have been damaged.	В	Very good	Strong
D4.SD2.S7	CEUS (contrast-enhanced ultrasound) is a valid method for detecting a central venous catheter tip in the right atrium	В	Very good	Strong
Cost-effective	ness of the use of ultrasound for vascular cannulation	105	VBW 8910	90
D5.S1-3	Ultrasound-guided vascular access has to be used because it results in clinical benefits and reduced overall costs of care makes it cost-effective	A	Very good	Strong

Bubble test

a. The addition of agitated saline to enhance transthoracic echocardiography has been shown to be effective in detecting catheter tip position in the lower third of the SVC, as well as detecting catheter malposition through delayed opacification and reduced echogenicity. 66-68 (IV)

tensive Care Med
OI 10.1007/s00134-012-2597-x

CONFERENCE REPORTS AND EXPERT PANEL

Massimo Lamperti Andrew R. Bodenham Mauro Pittiruti Michael Blaivas John G. Augoustides Mahmoud Elbarbary Thierry Pirotte Dimitrios Karakitsos Jack LeDonne Stephanie Doniger Giancarlo Scoppetuol David Feller-Kopman Wolfram Schummer Roberto Biffi Eric Desruennes

Lawrence A. Melnike Susan T. Verghese International evidence-based recommendations on ultrasound-guided vascular access

Ultrasound localization of central vein catheter and detection of postprocedural pneumothorax: An alternative to chest radiography*

Antonella Vezzani, MD; Claudia Brusasco, MD; Salvatore Palermo, MD; Claudio Launo, MD; Mario Mergoni, MD; Francesco Corradi, MD, PhD

DYNAMIC EMERGENCY MEDICINE

Rapid Confirmation of Central Venous Catheter Placement Using an Ultrasonographic "Bubble Test"

Confirmation of endovenous placement of central catheter using the ultrasonographic "bubble test"

Ajit S. Baviskar, Khalid I. Khatib, ¹ Sanjeev Bhoi, ² Sagar C. Galwankar, ³ and Harshad C. Dongare

Bubble test

Agitated Saline Bubble-Enhanced Transthoracic Echocardiography: A Novel Method to Visualize the Position of Central Venous Catheter

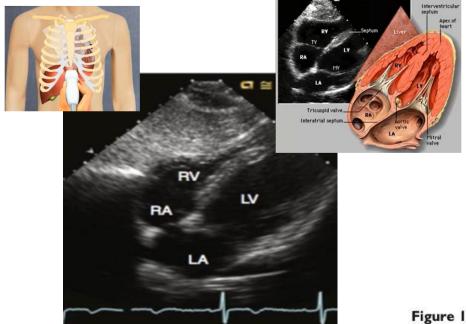
Ming Wen, MD; Konrad Stock, MD; Uwe Heemann, MD; Mario Aussieker, MD; Claudius Küchle, MD

Confirmation of correct central venous catheter position in the preoperative setting by echocardiographic "bubble-test"

M. MEGGIOLARO 1, A. SCATTO 1, A. ZORZI 2, E. ROMAN-POGNUZ 1 A. LAURO 3, C. PASSARELLA 1, G. BONACCORSO 1

¹Division of Anaesthesiology and Intensive Care, University Hospital of Padua, Padua, Italy; ²Division of Cardiology, Deparment of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy; ³Division of Radiology, University Hospital of Padua, Padua, Italy

Bubble test


The immediate appareance of the bubbles in the right atrium will confirm the proximity of the tip

If the bubbles do not appear or appear with a significant delay, the tip is not in SVC

Trans-thoracic echocardiography

Bubble test

Subcostal 4-chamber view

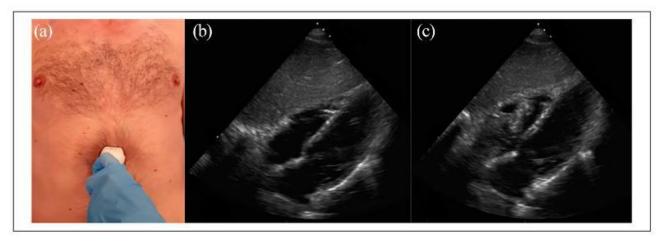
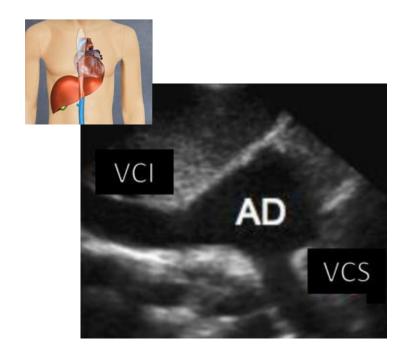



Figure 1. Subcostal (longitudinal) four-chamber view: placement of the probe (a), visualization of the heart chambers (b), and visualization of the microbubbles in the right atrium (c).

Trans-thoracic echocardiography

Bubble test

Subcostal bicaval view

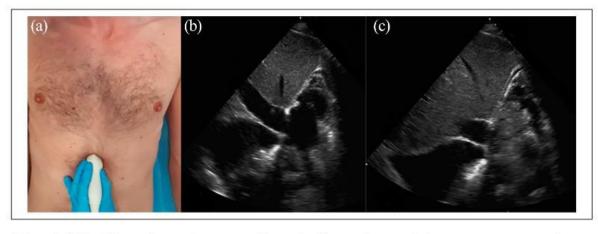
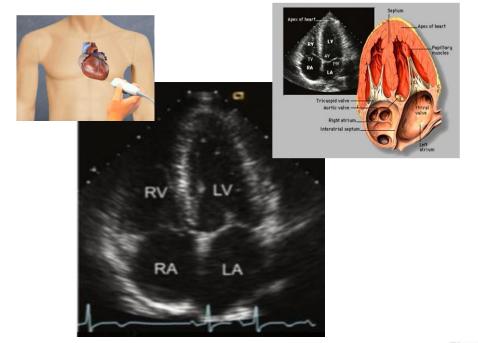
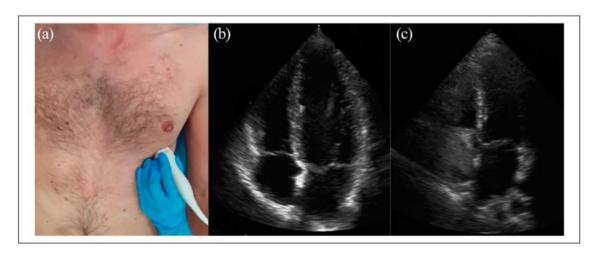



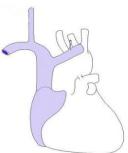
Figure 2. Subcostal (oblique) bi-caval view: placement of the probe (a), visualization of the superior vena cava, inferior vena cava, and right atrium (b), and visualization of the microbubbles in the right atrium (c).

Trans-thoracic echocardiography

Bubble test

Apical 4-chamber view




Figure 3. Transthoracic apical four-chamber view: placement of the probe (a), visualization of the heart chambers (b), and visualization of the microbubbles in the right atrium (c).

Trans-thoracic echocardiography

Bubble test

Qualitative data more reliable than quantitative data

- LAMINAR and IMMEDIATE FLOW in the right atrium: tip at the cavo-atrial junction or lower segment SVC
- IMMEDIATE and TURBULENT FLOW in the right atrium: intra-atrial tip
- LAMINAR FLOW with APPRECIABLE BUT NOT MEASURABLE LATENCY: catheter in the correct direction but the tip is probably distant from the cavo-atrial junction
- FLOW with APPRECIABLE LATENCY >2 sec: the catheter is poorly positioned
- TURBULENT FLOW FROM BELOW: catheter tip in IVC

ESRA ITALIAN CHAPTER | **30°** NATIONAL MEETING 13-15 NOV 2025, NAPOLI

Editorial

JVA The Journal of Vascular Access

ECHOTIP: A structured protocol for ultrasound-based tip navigation and tip location during placement of central venous access devices in adult patients The Journal of Vascular Access 2023, Vol. 24(4) 535–544

The Author(s) 2021

Article reuse guidellnes: sagepub.com/journals-permissions
DOI: 10.1177/11297298211044325
journals-sagepub.com/home/jva

Antonio La Greca¹, Emanuele Iacobone², Daniele Elisei², Daniele Guerino Biasucci³, Vito D'Andrea⁴, Giovanni Barone⁵, Geremia Zito Marinosci⁶ and Mauro Pittiruti¹

US Tip location

Table	١.	(a)	ECI	HOTI	P proto	col	for	CI	C	Cs	ļ
-------	----	-----	-----	------	---------	-----	-----	----	---	----	---

	Probe	Technique
Tip navigation	7–12MHz linear probe	Visualization of the cannulated vessel (wire/catheter inside the vein) Visualization of the deep vessels of neck and chest according to RaCeVA
Tip location	2–6 MHz sectorial probe As alternative option: 3–8 MHz convex probe	Immediate visualization (<1 s) of bubbles in RA after flushing First option: subcostal views (four-chamber or bi-caval) Second option: four-chamber apical view

(b) ECHOTIP protocol for PICCs.

	Probe	Technique
Tip navigation	7–12 MHz linear probe	Visualization of the deep veins of the arm and of the infra/supraclavicular area according to RaPeVA and RaCeVA
Tip location	2–6 MHz sectorial probe As alternative option: 3–8 MHz convex probe	Immediate visualization (<2s) of bubbles in RA after flushing First option: subcostal views (four-chamber or bi-caval) Second option: four-chamber apical view

(c) ECHOTIP protocol for FICCs.

	Probe	Technique
Tip navigation	7–12MHz linear probe (femoral vein and external iliac vein)	Visualization of the deep vessels of the lower limb according to RaFeVA
	3-8 MHz convex probe (common iliac vein and IVC)	Visualization of IVC in short and long axis views
Tip location	2–6 MHz sectorial probe	Visualization of bubbles after flushing
	As alternative option: 3-8 MHz convex probe	Tip in IVC: immediate visualization of bubbles in IVC
		Tip in RA or at the junction RA/IVC: immediate visualization of bubbles in RA

ECHOTIP protocol

Editorial

JVA The Journal of Vascular Access

Neo-ECHOTIP: A structured protocol for ultrasound-based tip navigation and tip location during placement of central venous access devices in neonates

The Journal of Vascular Access I-10
© The Author(s) 2021
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/11297298211007703
journals.sagepub.com/home/jva

Giovanni Barone ¹, Mauro Pittiruti², Daniele G Biasucci³, Daniele Elisei⁴, Emanuele Iacobone⁴, Antonio La Greca², Geremia Zito Marinosci⁵ and Vito D'Andrea⁶

Protocol	Probe	Windows
Tip navigation	Linear "hockey stick" probe, 10–14 MHz	Acoustic windows of RaCeVA
Tip location	Small sectorial probe, 7–8 MHz	Bi-caval view; four-chamber apical view; long axis view of SVC

ECHOTIP protocol

Editorial

ECHOTIP-Ped: A structured protocol for ultrasound-based tip navigation and tip location during placement of central venous access devices in pediatric patients JVA The Journal of Vascular Access

The Journal of Vascular Access 1–9
© The Author(s) 2021
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/11297298211031391
journals.sagepub.com/home/jva

Geremia Zito Marinosci^{1*}, Daniele Guerino Biasucci^{2*}, Giovanni Barone³, Vito D'Andrea⁴, Daniele Elisei⁵, Emanuele Iacobone⁵, Antonio La Greca⁶ and Mauro Pittiruti⁶

Protocol	Probe	Windows
Tip navigation	Linear "hockey stick" probe, 10–14 MHz	Same acoustic windows as RaCeVA
Tip location	Micro-convex probe, 4–8 MHz, or small sectorial probe, 3–7 MHz	Subcostal bi-caval view (recommended) or four- chambers apical view (as alternative option)

ECHOTIP protocol

Editorial

ECHOTIP: A structured protocol for ultrasound-based tip navigation and tip location during placement of central venous access devices in adult patients

Daniele Guerino Biasucci³, Vito D'Andrea⁴, Giovanni Barone⁵, Geremia Zito Marinosci⁶ and Mauro Pittiruti lo

Antonio La Greca¹, Emanuele Iacobone², Daniele Elisei²,

	Probe	Technique
Tip navigation	7–12 MHz linear probe	Visualization of the cannulated vessel (wire/catheter inside the vein) Visualization of the deep vessels of neck and chest according to RaCeVA
Tip location	2–6 MHz sectorial probe As alternative option: 3–8 MHz convex probe	Immediate visualization ($<$ I s) of bubbles in RA after flushing First option: subcostal views (four-chamber or bi-caval) Second option: four-chamber apical view

The Journal of Vascular Access © The Author(s) 2021 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/11297298211044325 journals.sagepub.com/home/jva (\$)SAGE

Editorial

Ultrasound-based tip navigation and tip location during placement of central venous access devices in adult patients: The ECHOTIP protocol revisited

The Journal of Vascular Access © The Author(s) 2025 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/11297298251347084 journals.sagepub.com/home/jva

S Sage

Visualization of wire/catheter inside the veins of the lower limb according to

Maria Giuseppina Annetta (0), Stefano Elli²(0), Antonio Gidaro³, Davide Giustivi⁴, Emanuele Iacobone⁵ and Mauro Pittiruti6

7-12 MHz linear probe

ECHOTIP protocol for FICCs

Tip navigation

	(femoral and external iliac	the RaFeVA protocol.
	veins)	Visualization of wire/catheter inside the subdiaphragmatic tract of the
	3–8 MHz convex probe (inferior vena cava)	inferior vena cava, using the transhepatic view.
Tip location	2–6 MHz sectorial probe or 3–8 MHz convex probe	Tip in inferior vena cava: immediate visualization (<500 ms) of the bubbles in the subdiaphragmatic tract of the inferior vena cava (using the transhepatic view).
		Tip in right atrium: immediate visualization ($<$ 500 ms) of the bubbles in the right atrium (using the subcostal views).
		Alternative option: immediate visualization of micro-embolic signals by pulsed wave doppler.

ECHOTIP protocol - 2

Editorial

Ultrasound-based tip navigation and tip location during placement of central venous access devices in adult patients: The ECHOTIP protocol revisited

The Journal of Vascular Access 1-7 © The Author(s) 2025 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/11297298251347084 journals.sagepub.com/home/jva

S Sage

Maria Giuseppina Annetta¹, Stefano Elli², Antonio Gidaro³, Davide Giustivi⁴, Emanuele Iacobone⁵ and Mauro Pittiruti⁶

1) The appropriate interpretation of the "bubble test" when used for estimating the distance between catheter tip and right atrium, with special regard to the delay time of appearance of the micro-bubbles

In conclusion, these recent findings suggest that the 1–2 s cut-off previously proposed in the literature^{24,25,31} and adopted by the 2021 ECHOTIP protocol8 is excessively long and thus inappropriate for the indirect estimation of tip location. The cut-off most likely to be accurate is 500 ms, as originally suggested by Meggiolaro et al.,²⁹ since such delay is associated with a very high probability of the presence of the tip at less than 1 cm from the point where the bubbles appear. Although 500 ms seem to be a suitable and efficient cut-off, this duration is notably very brief and hard to measure (e.g. a blink of an eye lasts approximately the same time).³² For the practical purposes, this new version of the ECHOTIP protocol—as regards tip location of PICCs and CICCs-recommends to consider that the tip is at the cavo-atrial junction when the micro-bubbles appear in the right atrium "immediately" (i.e. within 500 ms) after the start of saline injection, independently from the catheter type or length.

ESRA ITALIAN CHAPTER | 30° NATIONAL MEETING 13-15 NOV 2025, NAPOLI

ECHOTIP protocol - 2

Editorial

Ultrasound-based tip navigation and tip location during placement of central venous access devices in adult patients: The ECHOTIP protocol revisited

Maria Giuseppina Annetta (D), Stefano Elli²(D), Antonio Gidaro³, Davide Giustivi⁴, Emanuele Iacobone⁵ and Mauro Pittiruti6

2) The application of the pulsed-wave doppler as an alternative option for visualizing the appearance of the flow in the right atrium during the "bubble test"

The Journal of Vascular Access © The Author(s) 2025 sagepub.com/journals-permissions DOI: 10.1177/11297298251347084 journals.sagepub.com/home/jva

S Sage

Original research article

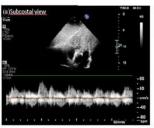
Pulsed-wave Doppler for ultrasound-based tip location using bubble test: A pilot study

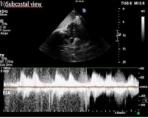
Antonio Gidaro 10, Francesco Casella , Chiara Cogliati , Antonio La Greca², Francesca Lugli¹, Chiara Trione¹, Maria Calloni¹, Chiara Melchionda¹, Federica Samartin¹, Emanuele Salvi¹ and Elisa Ceriani¹

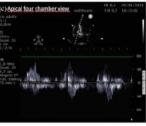
Advantages:

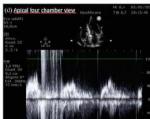
Visual signal of MES (microembolic signals) Production of a typical sound due to the alternation

It is synchronous with cardiac flow and heart rate


Limitations:


Single center Small sample size (n=9)



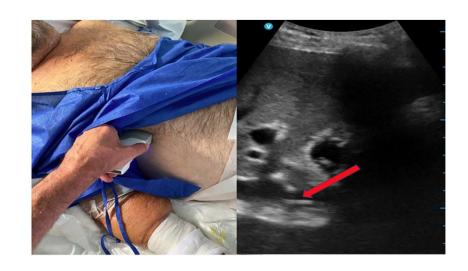

The Journal of Vascular Access The Author(s) 2022 Article reuse guidelines DOI: 10.1177/11297298221109662 ournals.sagepub.com/home/jva

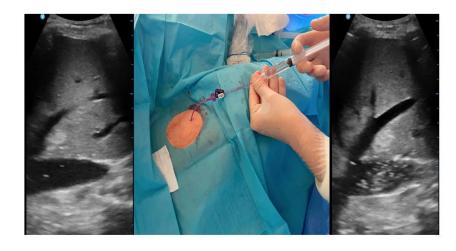
\$SAGE

ECHOTIP protocol - 2

Editorial

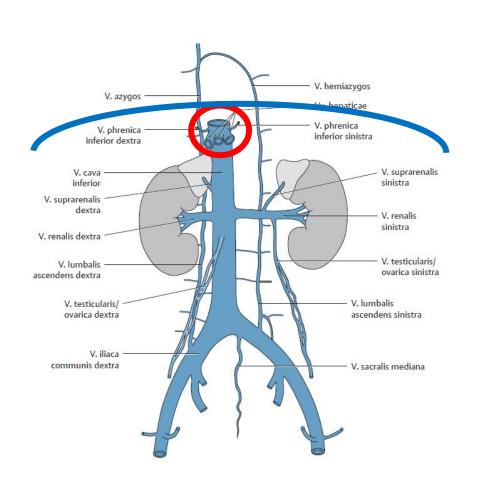
Ultrasound-based tip navigation and tip location during placement of central venous access devices in adult patients: The ECHOTIP protocol revisited


JVA The Journal of Vascular Access

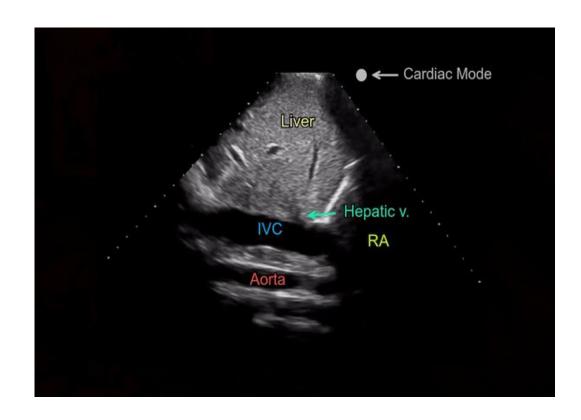

The Journal of Vascular Access 1-7 © The Author(s) 2025 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/11297298251347084 journals.sagepub.com/home/jva

S Sage

Maria Giuseppina Annetta¹, Stefano Elli², Antonio Gidaro³, Davide Giustivi⁴, Emanuele Iacobone⁵ and Mauro Pittiruti⁶


3) The adoption of the trans-hepatic acoustic window for the visualization of the catheter in the subdiaphragmatic tract of the inferior vena cava.

ESRA ITALIAN CHAPTER | 30° NATIONAL MEETING


The Journal of Vascular Access Techniques in vascular access The Journal of Vascular Access Applicability and feasibility of © The Author(s) 2023 Article reuse guidelines: intraprocedural tip location of femorally DOI: 10.1177/11297298231153979 inserted central catheters by transhepatic journals.sagepub.com/home/jva **\$**SAGE ultrasound visualization of the inferior vena cava in adult patients Maria Giuseppina Annetta D, Bruno Marche, Igor Giarretta² and Mauro Pittiruti

Which part of the inferior vena cava can be seen with a transhepatic approach?

Right atrium, subdiaphragmatic portion of the IVC for approximately 3-4 cm up to the superior pole of the right kidney

Transhepatic US visualization of the IVC

ESRA ITALIAN CHAPTER | 30° NATIONAL MEETING

Techniques in vascular access

JVA The Journal of Vascular Access

The journal of vacular Access
22d, Vol. 25(4) 1308–1312
© The Author(s) 2023
Article reuse guidelines
sagepub.com/journals-permissions
DOI: 10.1177/1129729231178063
journals.asgepub.com/homel/ya
\$ Sage

femorally inserted central catheters into the inferior vena cava: A comparison between the transhepatic and the subcostal view

Maria Giuseppina Annetta¹, Bruno Marche², Giovanna Mercurio¹ and Mauro Pittiruti³

Ultrasound based tip location of

Abstract

Background: Intraprocedural catheter tip location is currently recommended. Intracavitary EGC and ultrasound are the preferred methods of tip location for catheters with their tip in the superior vena cava or in the right atrium. Though, the best method of intraprocedural tip location for catheters with their tip in the inferior vena cava is still uncertain. One possibility is to visualize the subdiaphragmatic inferior vena cava by ultrasound, using either the transhepatic or the subxiphoid view.

Methods: In this prospective study, we compared two different ultrasound windows for the visualization of the inferior vena cava (transhepatic vs subxiphoid) for the purpose of localizing the catheter tip during the insertion of femorally inserted central catheters.

Results: We studied 249 consecutive insertions of central catheters via the superficial femoral vein. Intraprocedural location of the catheter tip was performed by ultrasound, using both transhepatic and subxiphoid view. Visualization of the inferior vena cava was possible only in 81 cases (32.5%) with the subxiphoid view, but it was always possible in all 249 cases with the transhepatic view. The catheter tip was localized in 15 patients out of 81 with the subxiphoid view (18.5%); the transhepatic view allowed the visualization of the tip in all 249 patients.

Conclusions: The applicability of the subxiphoid window has several limitations, both in terms of visualization of the inferior vena cava and localization of the catheter tip. The transhepatic view should be the preferred method for intraprocedural ultrasound localization of the catheter tip in the inferior vena cava.

ESRA ITALIAN CHAPTER | 30° NATIONAL MEETING 13-15 NOV 2025, NAPOLI

Editorial

ECHOTIP: A structured protocol for ultrasound-based tip navigation and tip location during placement of central venous access devices in adult patients The journal of Vaccilar Access 2023, Vol. 24(4) 535–544

⊕ The Author(s) 2021

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/11297298211044325
journals.sagepub.com/home/jva

Vascular Access

Antonio La Greca¹, Emanuele Iacobone², Daniele Elisei², Daniele Guerino Biasucci³, Vito D'Andrea⁴, Giovanni Barone⁵, Geremia Zito Marinosci⁶ and Mauro Pittiruti¹

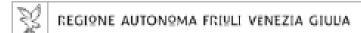
US Tip location

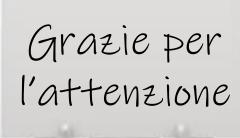
ECHOTIP proto	ocol for CICCs	
Tip navigation	7–12 MHz linear probe	Visualization of wire/catheter inside the veins according to the RaCeVA protocol.
Tip location	2–6 MHz sectorial probe or 3–8 MHz convex probe	Immediate visualization (<500 ms) of the bubbles in right atrium, preferably using the subcostal views (apical view is regarded as second choice). Alternative option: immediate visualization of micro-embolic signals by pulsed wave doppler (using the same views).
ECHOTIP proto	ocol for PICCs	
Tip navigation	7–12 MHz linear probe	Visualization of wire/catheter inside the veins according to the RaPeVA and RaCeVA protocols.
Tip location	2–6 MHz sectorial probe or 3–8 MHz convex probe	Immediate visualization (<500 ms) of the bubbles in right atrium, preferably using the subcostal views (apical view is regarded as second choice). Alternative option: immediate visualization of micro-embolic signals by pulsed wave doppler (using the same views).
ECHOTIP proto	ocol for FICCs	
Tip navigation	7–12 MHz linear probe (femoral and external iliac veins) 3–8 MHz convex probe (inferior vena cava)	Visualization of wire/catheter inside the veins of the lower limb according to the RaFeVA protocol. Visualization of wire/catheter inside the subdiaphragmatic tract of the inferior vena cava, using the transhepatic view.
Tip location	2–6 MHz sectorial probe or 3–8 MHz convex probe	Tip in inferior vena cava: immediate visualization (<500 ms) of the bubbles in the subdiaphragmatic tract of the inferior vena cava (using the transhepatic view). Tip in right atrium: immediate visualization (<500 ms) of the bubbles in the

right atrium (using the subcostal views).

pulsed wave doppler.

Alternative option: immediate visualization of micro-embolic signals by


- Extreme portability of the system
- Multiple transducers
- Connect to specific applications



Fabrizio Brescia

SOC Anestesia e Rianimazione Vascular Access Team fabriziobrescia@gmail.com

