

Joints, muscles and nerves: an overview of spinal pain generators and their treatment

Dott. Pietro Vassetti

Direttore HUB - UOSD Medicina del Dolore – P.O. San Giuliano – ASL Napoli 2 Nord

Spinal Pain: a Constellation of Pathologic Entities

Mechanical / Non-specific

Muscle strain, ligament sprain

Disc degeneration (DDD)

Disc herniation

Facet joint dysfunction

Spondylolysis

spondylolisthesis

Postural abnormalities

Inflammatory / Autoimmune

Ankylosing spondylitis

Psoriatic arthritis

Rheumatoid arthritis

DISH

Degenerative

Osteoarthritis (spondylosis)

Degenerative disc disease

Facet joint arthropathy

Spinal stenosis

Infectious

Discitis

Vertebral osteomyelitis

Epidural abscess

Spinal tuberculosis (Pott's disease

Neuropathic

Radiculopathy

Spinal cord lesions

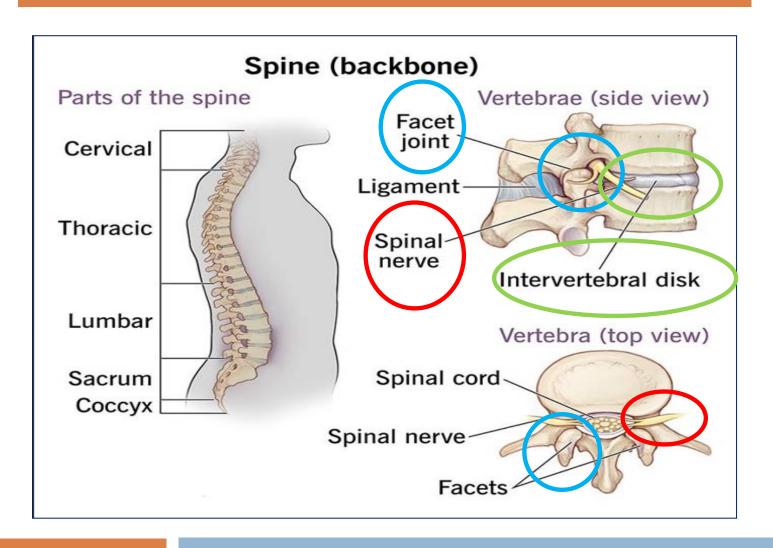
Failed back surgery

syndrome

Neoplastic

Primary spinal tumors

Metastases

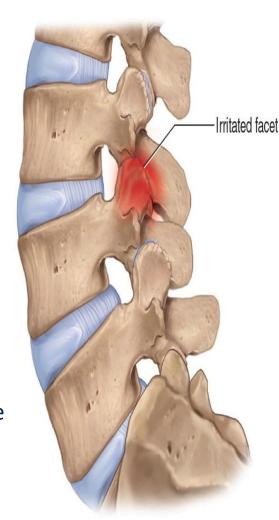

Multiple myeloma

Lymphoma /

leukemia

An Overview of Chronic Spinal Pain Revisiting Diagnostic Categories and Exploring an Evolving Role for Neurostimulation Ashwini Sharan, MD, FACS, Jonathan Riley, MD, and Christian Hoelscher, MD SPINE Volume 42, Number 14S, pp S35–S40 2017

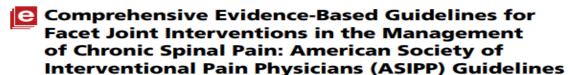
Pain Generators of Spinal Pain


Clinical Aspects of Facet-Joint Pain

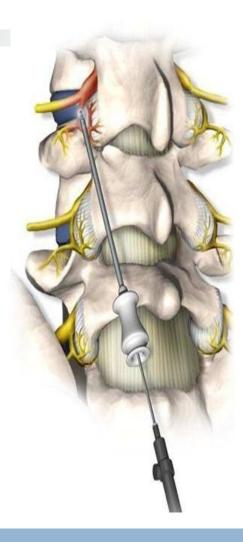
Facetogenic pain is estimated to be the source of chronic low back pain in about 15 % to 45 % of cases

Pain is predominantly **axial** (low back or neck) and may be worsened by extension, rotation, or prolonged standing

On physical exam: local paraspinal tenderness, pain on extension/rotation maneuvers, but no reliable pathognomonic signs.


- Diagnostic imaging: facet hypertrophy, osteoarthritis, joint space narrowing
- •The gold standard to implicate a facet joint is **diagnostic block** (medial branch block or intraarticular injection) under imaging guidance

Treatment of Facet Joint Pain: interventional options


Pain Physician 2020; 23:S1-S127 • ISSN 2150-1149

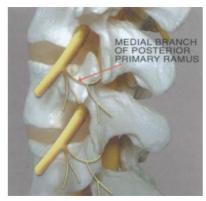
Facet Joint Interventions Guidelines

Laxmaiah Manchikanti, MD, Alan D. Kaye, MD, PhD, Amol Soin, MD, Sheri L. Albers, DO, Douglas Beall, MD, Richard E. Latchaw, MD, Mahendra R. Sanapati, MD, Shalini Shah, MD, Sairam Atluri, MD, Alaa Abd-Elsayed, MD, MPH, Salahadin Abdi, MD, PhD, Steve Aydin, DO, Sanjay Bakshi, MD, Mark Boswell, MD, PhD, Ricardo Buenaventura, MD, Joseph Cabaret, MD, Aaron K. Calodney, MD, Kenneth D. Candido, MD, Paul J. Christo, MD, Lynn Cintron, MD, Sudhir Diwan, MD, Christopher Gharibo, MD, Jay Grider, DO, PhD, Myank Gupta, MD, Bill Haney, MD, Michael E. Harned, MD, Standiford Helm II, MD, Jessica Jameson MD, Sunny Jha, MD, Adam M. Kaye, Pharm D, FASCP, FCPhA, Nebojsa Nick Knezevic, MD, PhD, Radomir Kosanovic, MD, Maanasa V. Manchikanti, Annu Navani, MD, Gabor Racz, MD, Vidyasagar Pampati, MSc, Ramarao Pasupuleti, MD, Cyril Philip, MD, Kartic Rajput, MD, Nalini Sehgal, MD, Gururau Sudarshan, MD, Rachana Vanaparthy, MBBS, Bradley W. Wargo, DO, and Joshua A. Hirsch, MD

- Intraarticular injections
- Radiofrequency neurotomy of medial branch
- Therapeutic facet joint nerve blocks

Radiofrequency Ablation of Medial Branch

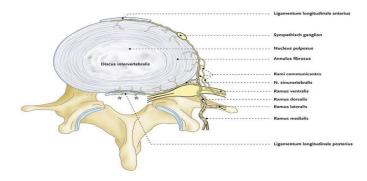
Special article

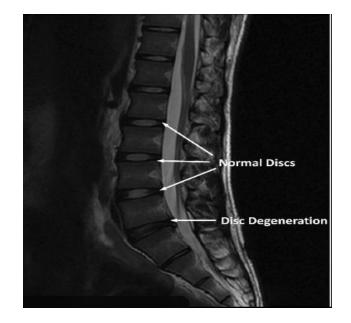


Consensus practice guidelines on interventions for lumbar facet joint pain from a multispecialty, international working group

Steven P Cohen , ¹ Arun Bhaskar, ² Anuj Bhatia, ³ Asokumar Buvanendran, ⁴ Tim Deer, ⁵ Shuchita Garg, ⁶ W Michael Hooten , ⁷ Robert W Hurley, ⁸ David J Kennedy, ⁹ Brian C McLean, ¹⁰ Jee Youn Moon, ¹¹ Samer Narouze, ¹² Sanjog Pangarkar, ¹³ David Anthony Provenzano, ¹⁴ Richard Rauck, ¹⁵ B Todd Sitzman, ¹⁶ Matthew Smuck, ¹⁷ Jan van Zundert , ^{18,19} Kevin Vorenkamp, ²⁰ Mark S Wallace, ²¹ Zirong Zhao²²

RFA techniqueRFA technique		
Stimulation	Motor necessary; sensory recommended in the absence of multiple lesions	Motor strongly recommended; sensory at discretion of practitioner
Needle size	Large (preferably at least 18-gauge)	Large
Temperature	80°C-90°C	80°C-90°C
Duration	Preferably at least 2 min	At least 1.5 min
Multiple lesions and/ or other techniques to increase lesion size	Necessary in the absence of clear-cut stimulation benchmarks	Depends on circumstances


Discogenic Pain: Clinical Features


Discogenic Pain results from degeneration or damage to the IVD

Symptoms: axial low back pain, worsened by flexion, prolonged sitting, bending, relieved by standing or extension

annulus

Diagnosis: MRI is the most commonly used non-invasive diagnostic tool for discogenic pain:
Disc degeneration: loss of signal intensity in T2 MRI Modic changes (types I, II, III) in adjacent vertebral endplates
Endplate defects, Schmorl's nodes, fissures of

Minimally Invasive Interventional Treatments

EVIDENCE-BASED REVIEW OPEN ACCESS

Update of Evidence-Based Interventional Pain Medicine According to Clinical Diagnoses

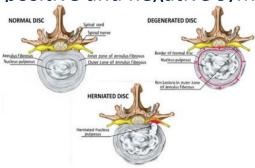
14. Discogenic Low Back Pain

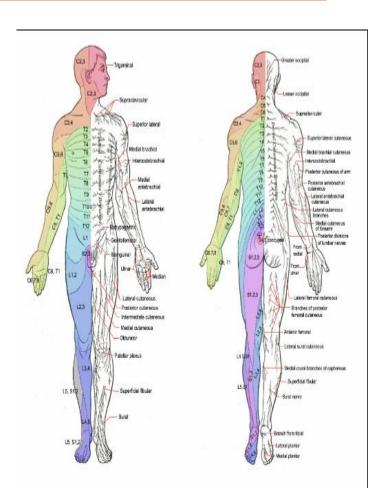
Wouter K. M. van Os¹ | Ricardo Alvarez-Jimenez¹ [o] | Steven P. Cohen².³ | Milan P. Stojanovic⁴.5.6 | Ricardo Ruiz-Lopez² | Jan Van Zundert^{8.9} [o] | Jan Willem Kallewaard¹.¹¹0

TABLE 2 | Evidence of interventional pain management of CDLBP.

Technique	Level of evidence	Best available evidence + effect (size)a	Recommendation
Biacuplasty	Moderate	3 RCTs [237, 243, 245]: reduced pain (1.6, 1.8 and 2.6) and ODI scores (8 and 12) at 6 months. The effects in the intervention cohorts sustained at 12 months (not sham-controlled) [242, 244]	Can be performed for refractory cases in selected centers
Spinal cord stimulation	Moderate	No RCTs Prospective cohort [284]: positive outcome in 9/10 patients, reduced pain scores (4.8), but no improvement in disability at 12 months. Prospective cohort [285]: positive outcome in 15/17 patients, reduced pain scores (2.9) and ODI (15.4), but no improved patient satisfaction or quality of life at 12 months	Could be considered only in severe cases when all other treatments have failed
IDET	Low	RCT [231]: sham-controlled trial negative at 6 months RCT [230]: sham-controlled trial reduced pain (1.3) and ODI scores (7) after 6 months with a number needed to treat of 5 2 single-arm MA [232, 233]: reduced pain scores (2.9-3.4) and ODI (5.2-7.0) at 6-34 months	Can be considered for refractory cases with debilitating pain, but ideally in a study setting
DRG stimulation (L2)	Very low	No RCTs Prospective cohort [292]: 68.3% of patients had significant pain reduction, reduced ODI (21.99) and increased EQ-5D index (0.23) at 12 months	Should not be considered as standard treatment but may be considered as rescue therapy for refractory cases or as part of a clinical study

Minimally Invasive Interventional Treatments


Intradiscal corticosteroid injection	Low	2 RCTs [120, 121]: negative at 2 weeks and 12 months RCT [122]: reduced pain scores and ODI at 3 and 6 months RCT [123]: reduced pain scores (1.5 points), but not functional outcomes at 1 month, negative at 12 months RCT [124] (control group: lidocaine): reduced pain scores (2.8 points) at 1 month, but not at 3 or 6 months	Should not be used outside of a study setting
Intradiscal methylene blue injection	Low	RCT [130]: negative at 6 months RCT [131]: reduced pain and ODI scores (approx. 4.5 and 33, respectively) at 6, 12 and 24 months 1 single-arm MA [135]: reduced pain and ODI scores (3.6 and 25, respectively, at 3 months, 3.0 and 23 at 6 months, 3.2 and 30 at 12 months)	Should not be used outside of a study setting
PIRFT	Low	RCT [250]: negative at 8 weeks	Should not be used outside of a study setting
Mesenchymal stem cells injection	Very low	RCT [192]: negative at 3, 6 and 12 months RCT [191]: improvement in VAS and ODI until 36 months Single-arm MA [186]: reduced pain scores (3.7) and ODI (26) at 12 months	Should not be used outside of a study setting
Platelet rich plasma injection	Very low	RCT [198]: negative at 2 months RCT [152]: reduced "best pain scores" (0.7), but no improved functional outcomes at 2 months 4 single-arm MA [184–186, 188]: reduced pain scores (approx. 4)	Should not be used outside of a study setting
Cytokine antagonists	Very low	2 RCTs [216, 217]: negative at 1–2 months	Should not be used outside of a study setting

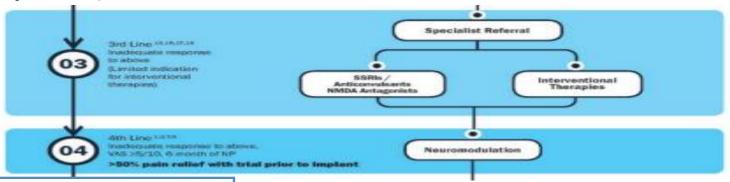

Neuropathic spinal pain: radiculopathies

Radicular pain is pain radiating along a spinal nerve root distribution, associated with sensory loss or paresthesias and often due to compression, inflammation or irritation of the root.

Common causes: intervertebral disc herniation, foraminal stenosis, degenerative spine disease (osteophytes, spondylosis), vertebral stenosis, infection (Herpes-zoster)

Diagnosis: clinical examination (distribution of pain, positive and negative symptoms), MRI, EMG

Neuropathic spinal pain: interventional management


Review Article

OXFORD

REVIEW ARTICLES

A Comprehensive Algorithm for Management of Neuropathic Pain

Daniel Bates, MD,* B. Carsten Schultheis, MD, PhD,[†] Michael C. Hanes, MD,[‡] Suneil M. Jolly, MD,^{5,¶} Krishnan V. Chakravarthy, MD, PhD,^{||,|||} Timothy R. Deer, MD,** Robert M. Levy, MD, PhD,^{††} and Corey W. Hunter, MD^{‡‡}

Epidural Injection. The recommendations around the use of epidural injections in neuropathic pain are mixed. The American Pain Society (APS) reported that there was fair evidence and provided a weak recommendation for the use of epidural steroid injection in persistent

Pulsed Radiofrequency. Pulsed radiofrequency is a nondestructive radiofrequency technique that passes an electrical field across the nerve, likely resulting in changes in synaptic transmission, in a neuromodulatory-type effect [90]. The APS and ASIPP provide no recommendation

Adhesiolysis. Adhesiolysis for FBSS and radicular pain is performed based on the premise that epidural adhesions are partly responsible for generation of pain. Injection of hyaluronidase, normal or hypertonic saline, and steroids is performed via a catheter in the epidural

Pulsed radiofrequency of DRG

> Pain Med. 2020 Dec 25;21(12):3320-3343. doi: 10.1093/pm/pnaa141.

Efficacy and Safety of Pulsed Radiofrequency as a Method of Dorsal Root Ganglia Stimulation in Patients with Neuropathic Pain: A Systematic Review

Ivana Vuka ¹, Tihana Marciuš ¹, Svjetlana Došenović ², Lejla Ferhatović Hamzić ³, Katarina Vučić ⁴, Damir Sapunar ¹, Livia Puljak ⁵

Pulsed radiofrequency (PRF) is a nonablative pain treatment that uses radiofrequency current in short high-voltage bursts, resulting in interruption of nociceptive afferent pathways

Clinical data are encouraging but limited by small sample sizes and variability in methods. High-quality, large RCTs are needed

Pulsed radiofrequency of DRG in PHN

Pain Physician 2017; 20:E411-E418• ISSN 2150-1149

Retrospective Study

Pulsed Radiofrequency to the Dorsal Root Ganglion in Acute Herpes Zoster and Postherpetic Neuralgia

KooHyun Kim, MD, DaeHyun Jo, MD, and EungDon Kim, MD

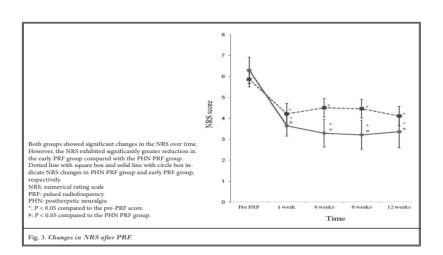


Table 3. Success rates of PRF.

	Early PRF group (n = 29)	PHN PRF group (n = 29)	P-value
Success of PRF, n (%)	24 (82.7)	5 (17.2)	< 0.0001#

PRF: pulsed radiofrequency. PHN: postherpetic neuralgia. #: P < 0.0001

Spinal cord stimulation: indications and complications

Review

Spinal Cord Stimulation for Neuropathic Pain: Current Trends and Future Applications

Ivano Dones * and Vincenzo Levi

Table 1. Common SCS indications and contraindications.

SCS Common Neuropathic Indications

Failed back surgery syndrome
Complex regional pain syndrome (I and II)
Radicular and nerve root pain
Postherpetic neuralgia
Pain due to peripheral nerve injury
Intercostal neuralgia
Phantom pain

SCS Main Contraindications

Infection Coagulopathy Spinal stenosis Psychiatric disorders Substance abuse

SCS: spinal cord stimulation.

Table 2. SCS surgical complications.

SCS Common Complications

More frequent

Hardware-related (lead migration, breakage, connection failure, malfunctioning, pain at the IPG)

Haematoma and seroma at IPG site

Rare Spinal epidural haematoma CSF leak Neurological deficit

IPG: internal pulse generator; CSF: cerebrospinal fluid.

Spinal Cord Stimulation

Hindawi Neural Plasticity Volume 2021, Article ID 5607898, 9 pages https://doi.org/10.1155/2021/5607898

Review Article

Spinal Cord Stimulation and Treatment of Peripheral or Central Neuropathic Pain: Mechanisms and Clinical Application

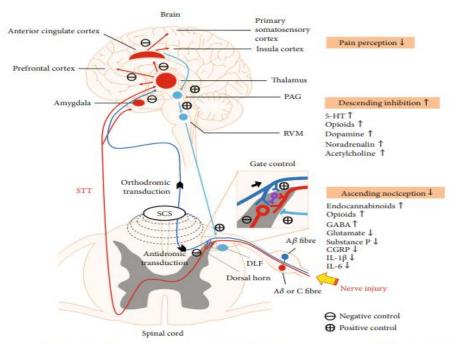
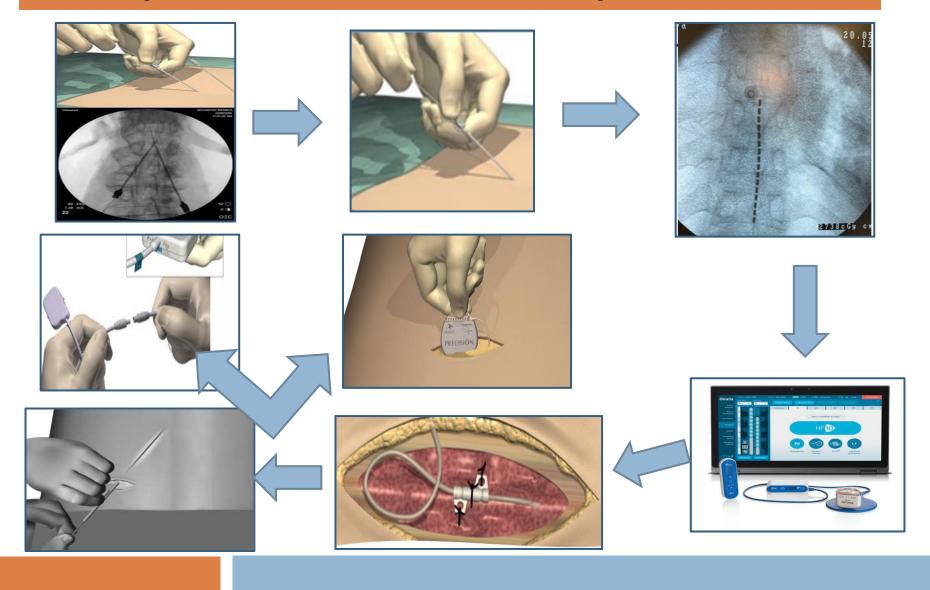
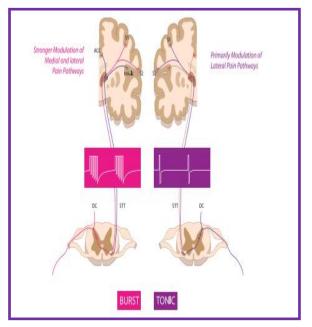
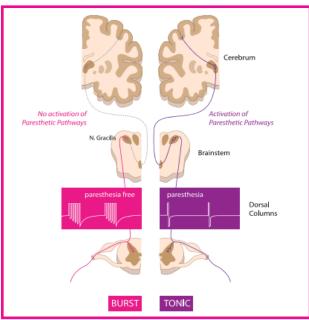



FIGURE 1: Schematic drawing shows the effects of spinal cord stimulation on nociceptive processing including segmental spinal inhibition, activation of descending inhibitory system, and cortical modulation. SCS: spinal cord stimulation; STT: spinothalamic tract; PAG: periaqueductal gray; RVM: ventrolateral medulla; DLF: dorsolateral funiculus.

Spinal cord stimulation: implantation


Spinal cord stimulation: waveform


Pain Medicine, 20, 2019, S13-S22 doi: 10.1093/pm/pnz073

OXFORD

Mechanism of Action in Burst Spinal Cord Stimulation: Review and Recent Advances

Krishnan Chakravarthy, MD, PhD,* Michael A. Fishman, MD,[†] Xander Zuidema, MD, PharmD,[‡] Corey W. Hunter, MD,[§] and Robert Levy, MD, PhD[¶]

Spinal cord stimulation: waveform

Pain Physician 2020; 23:451-460 • ISSN 1533-3159

Systematic Review

Comparison of Spinal Cord Stimulation Waveforms for Treating Chronic Low Back Pain: Systematic Review and Meta-Analysis

Jay Karri, MD¹, Vwaire Orhurhu, MD², Sayed Wahezi, MD³, Tuan Tang, MD⁴, Timothy Deer, MD⁵, and Alaa Abd-Elsayed, MD⁶

Spine

SPINE Volume 47, Number 7, pp 548–556 © 2021 The Author(s). Published by Wolters Kluwer Health, Inc.

CLINICAL CASE SERIES

OPEN

Passive Recharge Burst Spinal Cord Stimulation Provides Sustainable Improvements in Pain and Psychosocial Function: 2-year Results From the TRIUMPH Study

Timothy R. Deer, MD,^a Steven M. Falowski, MD,^b Gregory A. Moore, MD,^c J. Kelby Hutcheson, MD,^d Isaac Peña, MD,^e Kenneth Candido, MD,^f Eric G. Cornidez, MD,^g von und zu Fraunberg, MD,^h Bram Blomme, PhD,¹ and Robyn A. Capobianco, PhD¹

HHS Public Access

Author manuscript

Pain Pract. Author manuscript; available in PMC 2019 February 27.

Published in final edited form as:

Pain Pract. 2018 November; 18(8): 1048-1067. doi:10.1111/papr.12692.

Spinal Cord Stimulation: Clinical Efficacy and Potential Mechanisms

AD Sdrulla¹, Y Guan^{2,3}, and SN Raja²

¹Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, U.S.A.

²Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, U.S.A.

³Department of Neurological Surgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland, U.S.A.

COMPLEX CONDITION

SPINAL PAIN

PROGRESSIVE AND MULTIMEDIA APPROACH

CONSERVATIVE STRATEGY

INTERVENTIONAL TECHNIQUES

