

Appropriate choice of central venous access device: The DAV-expert algorithm

Fulvio Pinelli, MD

Centro Accessi Vascolari

Azienda Ospedaliera Universitaria Careggi - Firenze

The GAVeCeLT algorithm: the DAV-EXPERT

- Born in 2015; in 2019 updated and expanded to pediatric and neonatal patients
- First to cover **all clinical situations**: emergency, election; intensive, non-intensive
- Covers all devices: short, medium and long-term VAD
- This new version is an "expert system", which is both an algorithm and a guide that offers evidence behind each suggestion

The GAVeCeLT algorithm: the DAV-EXPERT

Currently available on the web site

www.gavecelt.info

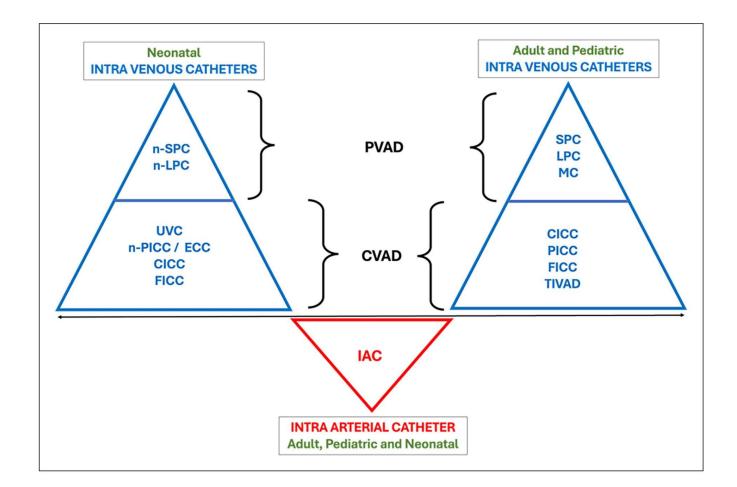
Available in Italian - Spanish - English - Portuguese

Choice of VAD in the adult patient

- ➤ Peripheral or central?
- > Election or emergency?
- ➤ DIVA or not DIVA?
- > Expected duration?
- ➤ Hospital or out-of-hospital use?

A step back: terminology

Editorial



The NAVIGATE project: A GloVANet-WoCoVA position statement on the nomenclature for vascular access devices The Journal of Vascular Access I–8
© The Author(s) 2024
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/11297298241291248
journals.sagepub.com/home/jva

Matheus (Roland) van Rens¹, Robin van der Lee¹, Timothy R Spencer², Ton van Boxtel³, Giovanni Barone⁴, Alessandro Crocoli⁵, Fulvio Pinelli⁶, Mauro Pittiruti⁷, on behalf of the WoCoVA Foundation (World Conference on Vascular Access) and of the Global Vascular Access Network (GloVANet)

The NAVIGATE Project

First step: Do I need a central VAD?

- Infusion of solutions not compatible with the peripheral route
 - Intravenous solutions with pH < 5 or > 9
 - Drugs with osmolarity > 600 mOsm/l
 - Parenteral nutrition
 - Vesicants
 - Any medication potentially associated with endothelial damage
- Hemodynamic monitoring
- Repeated daily blood draws
- Dialysis
- Need for long-term intravenous access (months or years)

Drugs in R&D https://doi.org/10.1007/s40268-020-00329-w

ORIGINAL RESEARCH ARTICLE

Add note...

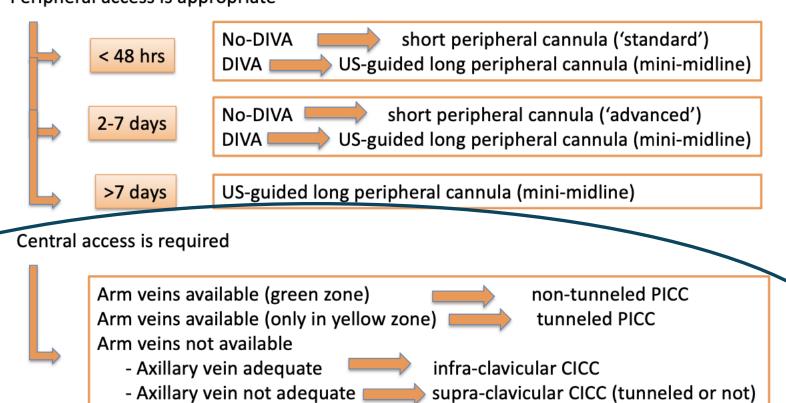
Standardization and Chemical Characterization of Intravenous Therapy in Adult Patients: A Step Further in Medication Safety

Silvia Manrique-Rodríguez^{1,2,3} • Irene Heras-Hidalgo^{1,2} • M. Sagrario Pernia-López^{1,2,3} • Ana Herranz-Alonso^{1,2,3} • M. Camino del Río Pisabarro^{4,5} • M. Belén Suárez-Mier^{4,6} • M. Antonia Cubero-Pérez^{4,7} • Verónica Viera-Rodríguez^{4,8} • Noemí Cortés-Rey^{4,9} • Elizabeth Lafuente-Cabrero^{4,10} • M. Carmen Martínez-Ortega^{4,11} • Esther Bermejo-López^{12,13} • Cristina Díez-Sáenz¹⁴ • Piedad López-Sánchez^{3,15} • M. Luisa Gaspar-Carreño^{3,16} • Rubén Achau-Muñoz^{3,16} • Juan F. Márquez-Peiró^{3,17} • Marta Valera-Rubio^{3,18} • Esther Domingo-Chiva^{3,19} • Irene Aquerreta-González^{3,20} • Ignacio Pellín Ariño^{12,21} • M. Cruz Martín-Delgado^{12,21} • Manuel Herrera-Gutiérrez^{12,22} • Federico Gordo-Vidal^{12,23} • Pedro Rascado-Sedes^{12,24} • Emilio García-Prieto^{12,25} • Lucas J. Fernández-Sánchez²⁶ • Sara Fox-Carpentieri²⁷ • Carlos Lamela-Piteira^{3,28} • Luis Guerra-Sánchez²⁹ • Miguel Jiménez-Aguado²⁹ • María Sanjurjo-Sáez^{1,2,3}

DRUG	CONCENTRATION	DILUENT	MEAN OSMOLALITY*	DENSITY b	MEAN OSMOLARITY	pН	VESICANT
ACYCLOVIR (amp 25 mg/ml 10 ml) TEDEC-MEIJI FARMA, S.A.	5 mg/mL (500 mg/100 mL)	D5W	287±0.58	1.043	300	10.46±0.02	YES
		NS	279±2.08	1.032	288	11.04±0.03	YES
ALBUMIN HUMAN (5% vial 250 mL, 20% ALBUNORM® vial 100 mL) OCTAPHARMA	5%	-	274±1.53	1.042	286	7.12±0.02	NO
	20%	-	274±0.58	1.059	290	7.04±0.01	NO
AMIKACIN (vial 500 mg/2 mL) B.BRAUN MEDICAL, S.A.	5 mg/mL (500 mg/100 mL)	D5W	308±1.00	1.047	322	4.42±0.01	NO
		NS	283±1.53	1.034	293	4.87±0.01	NO
	10 mg/ml	-	304±2.31	1.037	316	4.55±0.03	NO
AMIODARONE (TRANGOREX® amp 150 mg/3 mL) SANOFI-AVENTIS, S.A.	2.4 mg/mL (600 mg/250 mL)	D5W	298±1.53	1.020	304	3.84±0.01	YES
	3.6 mg/mL (900 mg/250 mL)	D5W	298±1.53	1.020	304	3.80±0.01	YES
AMOXICILLIN SODIUM- CLAVULANATE (vial 1 g) SANDOZ FARMACEUTICA, S.A.	10 mg/mL (500 mg/50 mL)	NS	350±1.53	1.036	363	8.91±0.01	NO
	20 mg/mL (2 g/100 mL)	NS	425±0.58	1.040	442	8.90±0.03	NO
AMPICILLIN (GOBEMICINA® vial 500 mg, vial 1 g) LABORATORIOS NORMON	10 mg/mL (1 g/100 mL)	NS	309±0.58	1.034	320	9.03±0.01	NO
	20 mg/mL (2 g/100 mL)	NS	347±2.08	1.038	360	9.04±0.03	NO

DRUG	CONCENTRATION	DILUENT	MEAN OSMOLALITY a	DENSITY b	MEAN OSMOLARITY °	рН	VESICANT
EPINEPHRINE (amp 1 mg/mL) B.BRAUN MEDICAL, SA.	40 μg/mL (10 mg/250 mL)	D5W	295±2.08	1.020	301	3.89±0.01	YES
		NS	276±0.58	1.008	279	3.91±0.01	YES
	100 μg/mL (10 mg/100 mL)	D5W	298±2.08	1.019	303	3.76±0.01	YES
		NS	277±0.58	1.008	280	3.72±0.01	YES
DOBUTAMINE (amp 250 mg/20 mL) PFIZER, S.L.U NOREPINEPHRINE	1 mg/mL (250 mg/250 mL)	D5W	282±1.53	1.018	287	3.95±0.01	YES
		NS	266±1.73	1.007	268	4.55±0.01	YES
		D5W	264±0.58	1.017	269	3.83±0.01	YES
	120 μg/mL (30 mg/250 mL)	D5W	296±0.58	1.014	300	3.80±0.01	YES
(amp 0.1% 10 mg/10 mL) B.BRAUN MEDICAL, SA.		NS	278±0.58	1.006	280	3.82±0.00	YES
DOPAMINE	1.6 mg/mL (400 mg/250 mL)						
(amp 200 mg/5 mL) GRIFOLS MOVACO S.A.		NS	289±1.53	1.007	291	4.80±0.01	YES

Manrique-Rodriguez et al. Drugs in R&D 2020


Obstruction of SVC

Adult patient- Elective

Intra-hospital use

Peripheral access is appropriate

tunneled FICC

Three types of central VADs (WoCoVA definition)

• PICC

• CICC

• FICC

How do we choose?

A CRUCIAL POINT IS THE EXIT SITE

Evaluation of Skin Colonisation And Placement of vascular access device Exit sites (ESCAPE Study)

Journal of Infection Prevention 2019, Vol. 20(1) 51–59 © The Author(s) 2018 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/1757177418805836 jip.sagepub.com

\$SAGE

Nancy L Moureau¹, Nicole Marsh², Li Zhang³, Michelle J Bauer³, Emily Larsen³, Gabor Mihala⁴, Amanda Corley^{3,5}, India Lye^{3,5}, Marie Cooke³ and Claire M Rickard^{3,6}

Results: The chest and upper arm were significantly associated with fewer microorganisms compared to neck or forearm (odds ratio [OR] = 0.40, 95% confidence interval [CI] = 0.25-0.65, P < 0.05). CFU levels under transparent dressings were not significantly different from outside (OR = 0.57, 95% CI = 0.22-1.45). Staphylococci were predominant at all sites. Other significant (P < 0.05) predictors of higher CFU count included prolonged hospitalisation and medical/surgical patient status.

A CRUCIAL POINT IS THE EXIT SITE

• The risk of contamination (germs, beard, damp, etc.) + risk of dislocation (unstable dressing) + risk of thrombosis (unstable catheter) differs from site to site:

Areas at highest risk:

- Groin
- Neck

Low-risk areas

- Infraclavicular
- Mid Arm
- Mid-thigh

ANOTHER CRUCIAL POINT IS INSERTIONAL RISK

Risk of pneumothorax due to pleural injury + risk of arterial puncture bleeding

Maximum risk:

Infraclavicular and supraclavicular CICCs

Minimal risk

- PICC
- FICC

RISK OF BLEEDING

Review

Management of antithrombotic treatment and bleeding disorders in patients requiring venous access devices: A systematic review and a GAVeCeLT consensus statement

The Journal of Vascular Access I–I2
© The Author(s) 2022
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/11297298211072407
journals.sagepub.com/home/jva

Maria Giuseppina Annetta¹, Sergio Bertoglio², Roberto Biffi³, Fabrizio Brescia⁴, Igor Giarretta⁵, Antonio La Greca¹, Nicola Panocchia⁶, Giovanna Passaro⁷, Francesco Perna⁸, Fulvio Pinelli⁹, Mauro Pittiruti¹, Domenico Prisco¹⁰, Tommaso Sanna⁸ and Giancarlo Scoppettuolo¹

RISK OF BLEEDING

Table 2. Summary of the panel recommendations.

Type of venous access procedure

Minimally invasive (all peripheral VADs, nontunneled PICCs, nontunneled FICCs at mid-thigh)

Moderately invasive

(nontunneled CICCs, nontunneled FICCs at the groin, tunneled PICCs, nontunneled dialysis catheters)

Highly invasive (tunneled CICCs, tunneled FICCs, tunneled-cuffed dialysis catheters, ports and PICC-ports)

Bleeding disorder PT/INR > 1.5 and/or	No contraindication	Relative contraindication (see	Absolute contraindication
aPTT ratio > 1.3	NO CONTRAINIDICATION	text)	Absolute contraindication
Platelet $<$ 50 \times 10 9 /L Antithrombotic treatment	No contraindication	Relative contraindication	Absolute contraindication (see text)
VKA	Do not withhold	Aim for PT/INR < 3 (see text)	Maintain PT/INR in the low therapeutic range (see text)

First option as an in-hospital CVAD: PICC

- Less invasive than CICC
- Infectious risk equal to CICC
- Thrombotic risk equal to CICC

Infectious risk: identical for PICC and CICC

Provided that the PICCs and CICCs are implanted correctly

Appropriate choice of emergence site = rational use of tunneling

Skin antisepsis with chlorhexidine 2% in isopropyl alcohol

Maximum barrier precautions

Sutureless stabilization

Exit site protection with cyanoacrylate glue

Use of semi-permeable transparent membranes

Thrombotic risk: identical for PICC and CICC

Provided that the PICCs and CICCs are properly implanted:

Appropriate choice of emergence site = rational use of tunneling

Catheter/vein ratio 1:3 (or less)

Ultrasound-guided venipuncture

Use of micropuncture kits

Accurate intraprocedural tip location (IC-ECG or echocardioscopy)

Correct stabilization of the catheter (sutureless + glue + semipermeable membrane)

First option as an in-hospital CVAD = PICC

- If there are no bilateral local contraindications
- If there is no chronic renal failure stage 3b 4 5
- If adequate caliber arm veins are present (at least 3 times the catheter)
- If such veins are only available in the yellow Dawson area, the PICC must be tunneled

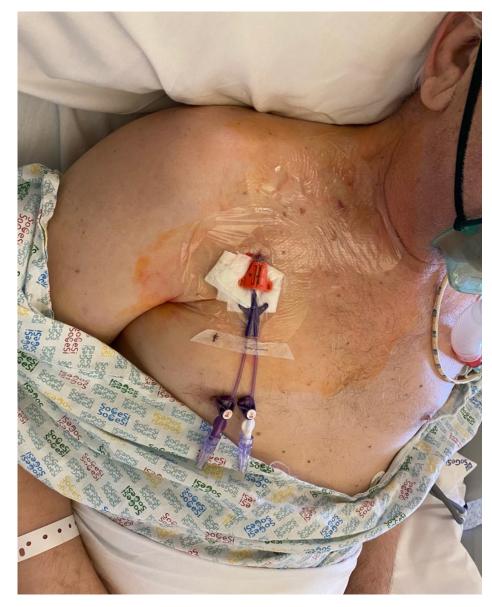
Tunnelling

If the PICC is not indicated

- Second option: Infraclavicular CICC
 - US-guided puncture of the infraclavicular axillary vein; Exit site in the infraclavicular area, with or without tunnelling
- Third option: Supraclavicular CICC
 - US-guided puncture of the brachiocephalic, subclavian, or IJV
 - Exit site in the supraclavicular area or, by tunnelling, in the infraclavicular area
- Fourth option: FICC
 - US-guided puncture of common FV or SFV
 - Mid-thigh exit site, with or without tunnelling

CICC (infraclavicular puncture)

CICC (infraclavicular puncture + tunnelling to the breast)



If the PICC is not indicated

- Second option: Infraclavicular CICC
 - US-guided puncture of the infraclavicular axillary vein; Exit site in the infraclavicular area, with or without tunneling
- Third option: Supraclavicular CICC
 - US-guided puncture of the brachiocephalic, subclavian, or IJV
 - Exit site in the supraclavicular area or, by tunnelling, in the infraclavicular area
- Fourth option: FICC
 - US-guided puncture of common FV or SFV
 - Mid-thigh exit site, with or without tunnelling

Non-tunnelled internal jugular CICC

Tunnelled Internal Jugular CICC

"Chest-to-arm" CICC (supraclavicular puncture)

CICC "chest-to-back" (brachiocephalic vein puncture)

If the PICC is not indicated

- Second option: Infraclavicular CICC
 - US-guided puncture of the infraclavicular axillary vein; Exit site in the infraclavicular area, with or without tunneling
- Third option: Supraclavicular CICC
 - US-guided puncture of the brachiocephalic, subclavian, or JV
 - Exit site in the supraclavicular area or, tunneling, in the infraclavicular area
- Fourth option: FICC
 - US-guided puncture of common FV or SFV
 - Mid-thigh exit site, with or without tunnelling

Tunneled FICC (CFV puncture)

Non-tunnelled FICC (SFV puncture)

FICC (CFV puncture + tunnelling to the distal thigh)

FICC in election: a fourth choice. Really?

Editorial

Femoral venous access: State of the art and future perspectives

The Journal of Vascular Access I–II
© The Author(s) 2023
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/11297298231209253

journals.sagepub.com/home/jva

Maria Giuseppina Annetta (D), Stefano Elli (D), Bruno Marche (D), Fulvio Pinelli (D) and Mauro Pittiruti (D)

FICC in election: a fourth choice. Really?

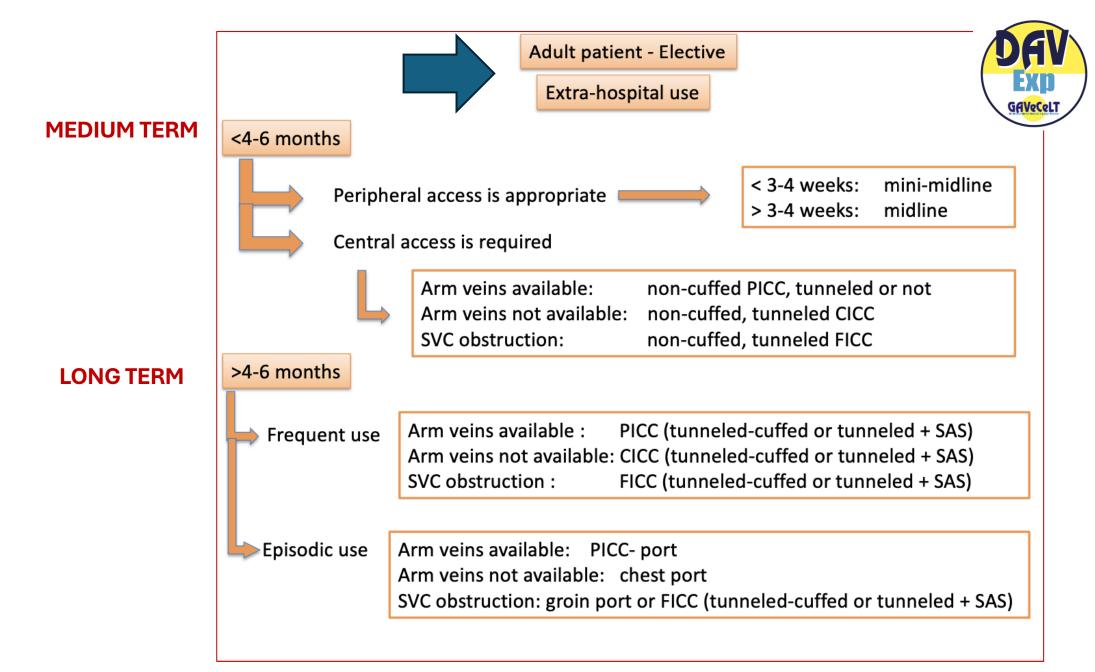
- "In the past 5 years, non-dialysis femoral venous access has changed in terms of indications, techniques of insertion, and expected incidence of complications."
- "Ultrasound guided venipuncture, tunnelling, and ultrasound based intraprocedural tip location."
- "All these novelties have brought a revolution in the field of femoral venous access, so that this route may be considered as safe and effective as other approaches to central venous catheterization."

To learn more...

Review

A GAVeCeLT consensus on the indication, insertion, and management of central venous access devices in the critically ill

The Journal of Vascular Access I–19
© The Author(s) 2024
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/11297298241262932
journals.sagepub.com/home/jva



Fulvio Pinelli¹, Mauro Pittiruti², Maria Giuseppina Annetta³, Francesco Barbani¹, Sergio Bertoglio⁴, Daniele G Biasucci⁵, Denise Bolis⁶, Fabrizio Brescia⁷, Giuseppe Capozzoli⁸, Sonia D'Arrigo³, Elisa Deganello⁹, Stefano Elli¹⁰, Adam Fabiani¹¹, Fabio Fabiani⁷, Antonio Gidaro¹², Davide Giustivi¹³, Emanuele Iacobone¹⁴, Antonio La Greca², Ferdinando Longo¹⁵, Alberto Lucchini¹⁶, Bruno Marche¹⁷, Stefano Romagnoli¹, Giancarlo Scoppettuolo¹⁸, Valentina Selmi¹⁹, Davide Vailati²⁰, Gianluca Villa¹ and Gilda Pepe²

What about non-hospitalized patients?

- Short peripheral cannulas (SPC): no indication
- Short-term CVAD: No indication
- Long Peripheral Cannulas (LPC): limited period (< 3-4 weeks)
- Midline: useful for extended periods (months), but only for solutions compatible with the peripheral route
- In most cases, a CVAD is required

Non-hospitalized patients: how to choose?

It depends on:

1. Expected duration

In the medium or long term?

2. Expected frequency of use

Frequent or episodic use?

Medium-term (<4 months)

- First option:
 - PICC (tunneled or non-tunneled)
- In case of contraindications to the PICC:
 - Uncuffed tunneled CICC (exit site below the clavicle)
 - Uncuffed tunneled FICC (exit site away from the groin)

Long-term (>4 months)

- Episodic use (< 1/week)
 - Chest-port
 - PICC-port
 - FICC- port
- Frequent use (> 1/week)
 - Tunneled catheter + cuff
 - PICC, CICC or FICC
 - Tunneled Catheter + SAS
 - PICC, CICC or FICC

A new long-term device: FICC-port

Original research article

Totally implanted central venous access devices inserted by the femoral route:

A narrative review and the proposal of a novel approach, the FICC-port

The Journal of Vascular Access I-9
© The Author(s) 2024
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/11297298241236816
journals.sagepub.com/home/jva

Maria Giuseppina Annetta¹, Bruno Marche², Gloria Ortiz Miluy³ and Mauro Pittiruti⁴

- 47 patients
- US-guided puncture of the superficial femoral vein at mid-thigh
- Intraprocedural location of the tip in the sub-diaphragmatic inferior vena cava, using ultrasound visualization by the transhepatic and/or the subcostal view
- Low-profile or very low-profile reservoir implanted above the quadriceps muscle, at mid-thigh
- No immediate/early complication, and only three late complications

A new long-term device: CVAD + SAS

- PICC or CICC or FICC tunnelled and stabilized with SAS (subcutaneous anchored system)
 - Infection prevention: tunnelling
 - Stabilization: SAS
- As effective as the cuff, and perhaps better...

A new long-term device: CVAD + SAS

To learn more...

Editorial

International experts consensus on optimal central vascular access device selection and management for patients with cancer

The Journal of Vascular Access I–I2
© The Author(s) 2024
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/11297298241300792
journals.sagepub.com/home/jva

Mohammad Jahanzeb¹, Ching-Yang Wu², Howard Lim³, Kei Muro⁴, Lichao Xu⁵, Manjiri Somashekhar⁶, Sampige Prasannakumar Somashekhar S P⁶, Xiaotao Zhang⁷, Xiaoxia Qiu⁸, Ying Fu⁹ and Mauro Pittiruti¹⁰

CONCLUSIONS

- The choice of CVAD must be made according to very specific criteria: the type of infusion; the setting; duration; the frequency of use; . . .
- We need an algorithm to choose the most appropriate CVAD
- The DAV Expert is based on the best available scientific evidence; its objectives are (a) minimizing the risks associated with VAD, (b) preserving the patient's veins, (c) reducing costs.
- The algorithm is not static and its suggestions are not dogmas: on the contrary, it must update continuously, based on new evidence (FICC, FICC port, SAS, etc.)

Thank you for your attention

fulvio.pinelli@unifi.it

